

JOHN ECCLES, M.A.,
Mathematical Adviser to the Survey of India, 1885 to 1910, Superintendent of the Trigonometrical Survey, 1910 to 1912, Joined the Service 1885, retired 1912.

RECORDS

OF THE

SURVEY OF INDIA

Volume III

$1911=12$

PREPARED UNDER THE DIRECTION OF
Colonel S. G. BURRARD, C.S.I., R.E., F.R.S.,
Surveyor General of India.

CAICUTJ'A
SOPERINTENDEN'T GOVERNMENT PRINTING, INDIA
1913

CONTENTS.

PART I.-TOPOGRAPHICAL SURVEY.

REPOR'IS FROM THE NOLTHERN CIRCLE

		P						Phag.
No.	1 Parti	\ldots	\ldots	\ldots	\ldots	1
No.	2 Party	\cdots	\ldots	...	\ldots	\ldots	\cdots	3
No.	3 Party	...	-	\ldots	\ldots	\cdots	\ldots	5
No.	4 Party	\cdots	...	\cdots	...	\cdots	\ldots	7
The	Riverain	MENT	...	\cdots	\cdots	\cdots	\ldots	9
The Sprcial Delifi Survey Detagiment				\ldots	...	\cdots	\cdots	13

JEPOR'TS FROM THE SOUTHERN CIRCLE.

| No. 5 Paity | \ldots | \ldots | \ldots | \ldots | \ldots | \ldots | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. 6 Pabty | \ldots | \ldots | \ldots | \ldots | \ldots | \ldots | 17 |
| No. 7 Pabty | \ldots | \ldots | \ldots | \ldots | \ldots | \ldots | 14 |
| No. 8 Pabty | \ldots | \ldots | \ldots | \ldots | \ldots | \ldots | 21 |

REPORTS FROM 'IHE EASTERN CIRCLE.

Nu. 9 Paity	\ldots	\ldots	24
No. 10 Party	\ldots	...	\cdot	-	27
No. 11 Party	\ldots	\ldots \cdot	28
No. 12 Pabty	...	\ldots	\cdots	..'	...	-	29
The Lebong Cantonment Subvei			\ldots		33

TABLE 1.-OUTTURNS OF DETAIL SURVEY	\cdots	36
TABLE II.-DETAILS OF TRIANGUIATION ANI	TRA VERSING	\cdots	37
TABLE III-COST-RATES OF SUIVVEY	.'. \quad -	...	38

PART II.-GEODETIC SURVEY.
No. 13 Party-ASTRONOMICAL LATITUDES 39
No. 14. Parti-PENDULUM OPERATIONS 43

PART III.-TRIANGULATION.
No. 15 Pabty 37

PAR'I IV.-TIDAL OPERATIONS.
No. 16 PARTY 70

> PART V.—LEVELIING.

No. 17 PARTY

PARI VI.-MAGNETIC SURVEY.
No. 18 Party

PART VII.-REPRODUCING OFFICES.

ILLUSTRA'IIONS.

MAPS

(at end of Volume).

1. INDEX TO MODERN SURVEYS, NORTHERN CIRCLIE.
2. " " \quad " SOUTHERN "
3. INDEX TO PUBLISHED MAPS ON THE SCALE OE 1 INCH = 1 MILE, NOJTHERN CIRCLE.
4. INDEX TO PUBLISHED MAPS ON THE SCALE OF 1 INCH = 1 MILE, SOUTHERN CIRCLE.
5. INDEX TO YUBLISHED MAPS ON IHE SCALE OF 1 INCH=1 MIJE, DASTERN CIRCLE
6. INDEX TO THE DEGREE SHEETS OF INDIA.
7. INDEX TO THE SHEETS OF THE "INDIA AND ADJACEN'N COUNTRIES" SELIES, SCALE $\frac{1}{1,000,000}{ }^{\circ}$
8. INDEX TO THE TRIANGULATION DEGLEE CHARTS OF INDIA.
9. INDEX CHAR' 'I'U THE GREAT 'IRIGUNOMETRICAL SURVEY OF INDIA,
10. " $"$ " MAGNETIC SURVEY OF INDIA.
11. MAP SHOWING TIIE GEODETIC WORK IN THE VICINITY OF DEHRA DŪN.

APPENDICES.

RECORDS OF

THE SURVEY OF INDIA

PART I.-TOPOGRAPHICAL SURVEY.

NORTHERN CIRCLE.

(Fide Index Maps 1 and 4.)
The circle remained under the superintendence of Colonel W. J. Bythell, R.E., up to the 2 nd of April, and after that date, was under the superintendence of Major C. H. D. Ryder, D.S.O., R.E.

The circle consisted of Nos. 1, 2, 3 and 4 field parties.
During the past field season 23,852 square miles were surveyed, detail as follows :-

The Riverain Detachment carried out 332.95 linear miles of mann, and $1911 \cdot 26$ miles of minor traverse.

A special detachment was sent to carry out a revision survey of Delhi and the vicinity on the t-inch scale for the Delhi Town-pianning Committee (vide p. 13).

No. 1 PARTY (KASHMIR).
By Major C. H. D. Ryder, D.S.O., R.E.
The head-quarters of the party remained at Srinagar (Kashmir) throughout the survey year.

The survey of the Kashmir valley proper was continued on the scale of 1 inch to 1 mile and completed and the work cxtended northwards on the same scale at the request of the Kashmir Durbar into the Kishenganga valley as far as the watersheds to the north and east.

The winter of 1911-12, though mild in the Kashmir valley, was a late one and the snow in the higher hills made work very

Upper Subordinate Serviec.
Mr. Sher Jang, K.B.
Mr. Natha Singli, R.S.
Mr. Lal Singh, R.B.
Mr. Paras Ram (promoted to U.S.S. from 1st July 1912).
Mr. Jamna Perahad (promoted to U.S.s. from 1st Jaly 1912).

Lower Subordinate Service .
Sarveyors, etc.
difficult in A pril and May, and in the Kishenganga valley impossible till the beginning of June. For these reasons the strength of the party had to be increased in order to complete the programme, as it involved triangulating and surveying in detail the Kishenganga valley in four and a half months, which work was successfully carried out.

Operations in the field were commenced in April 1912, and continued till the middle of October 1912.

The health of the party has been good and there has not been much sickness, owing to the extra precautions taken when men had to work under severe climatic conditions.
'There have been a few but no fatal cases of small-pox among members of the party.

Topography.-The area surveyed on the scale of 1 inch to 1 mile was 4,489 square miles. The party was divided at the commencement of the summer field season into 2 camps, and later on, into 4 camps, under Messrs. Hanby, West, Rennick and Hanson, and the number of detail surveyors varied from 7 in April, to 31 in September. The following sheets were surveyed in the field by the middle of October 1912:-

The sheets surveyed in part are up to the limit of the Kishenganga northern and eastern watersheds. Wherever the watersheds are the limit of the area to be surveyed on the 1 -inoh scale, half a mile beyond has been surveyed, to obtain a satisfactory junction with the smaller scale surveys, wher the degree sheets on the $\frac{1}{4}$-inch scale are compiled. The cost-rate was as follows :-1 -inch detail area, 4,489 square miles at Rs. 16.2 per square mile. An area of 866 square miles was surveyed in detail by surveyor Surjan Singh from the beginning of June to the middle of September on the scale of $\frac{1}{2}$ inch to 1 mile on and in the vicinity of the Siāchen glacier in Baltistan when attached to the Bullock Workman expedition. The actual pay of surveyor Surja" Singh and his servant and ordinary travelling allowance were met by the Survey of India and the remaininis expenses were paid by Mrs. Bullock Workman, it being understood that the map would be put at the disposal of the Survey of India on the return of the expedition. The cost-rate was as follows :- $-\frac{1}{8}$-inch detail area. 866 square miles at Rs. $1 \cdot 1$, (share paid by the Survey of India).

Triangulation.-During the previous winter triangulation was carried out in the field in the lower ground south of the Pir Panjal range in parts of Jammu and Pconch States, (the remainder of the party being employed in map dirawing in Srinagar).

Of the sheets surveyed in detail on the 1 -inch scale, only about 8 sheets had been triangulated in adrance at the commencement of the field season.

At the close of the field season the area triangulated in adrance for future detail surveys on the 1 -inch scale was 5,916 square miles, about 23 sheets in area.

The cost-rate of triangulation was as follows :-
Triangulation for 1 -inch surveys, area 8,421 square miles, at Rs. $4 \cdot 3$ per square mile.

Recess duties.-The area of fair mapping sent for publication was 3,702 square miles and consisted of 151 -inch sheets, viz.:--

43	$\frac{\mathbf{F}}{11.12 .15,16}$
43	J
	3, 4, 7, 5, 11, 12, 16
43	(1) 13
43	,
43	0

The cost of fair mapping was as follows:-
151 -inch sheets, area 3,702 square miles at Rs. $7 \cdot 1$ per square mile.
The total cost of the party was Rs. $1,36,287$.

```
No. 2 PARTY (PUNJAB).
hy Major E. a. Tandy, R.E.
```

'I'he season's work lay in the plains of the Punjab, comprising all the

Prrsonnkl.
Imperial Officers.
Major F. W. Pirrie, I.A.. in charge up to 24th March.
Major F. A. Tandy, P.E., in charge from 26th June.

Provincial Officers.

Mr. F. B. Powell, nttsehed to the Northein Circle Drawing Office during the field acason.
Mr. J. A. Frecman, in charge from 25th March to 25 th June.
Mr. E. B. West. from let March to 4th June.
Sinbedar lianak Singh.
Mr. R. E. Siubolle.
Mr. R. C. ('sisullivan.
Mr. J. Mecraker, absent on Delhi Sarvey from 29th March.
Mr. J. A. Calvert, from 29th May.
Upper Subordinate Serrice.
Mr. Mshindar Singh, up to 3lst October.
Lower Subordinate Sermice.
34. Survevita.

2 New Soldier Survegors.
5 Drafteman.
\therefore Clirka.
i Store-keeper.
5) Other draftsmen.
sheets in 44 I and 44 M , except $\frac{1}{14}$ and $\frac{4}{15}$

Sheets $\frac{1}{1 \pi \bar{h}}$ were omitted because the country is being altered by new irrigation, and sheet $\frac{\mathrm{m}}{13}$ because it included some difficult Siwālik work. This latter sheet will be taken up in the coming season, but the former will have to await the development of the new irrigation.

The area surveved includes all Amritsar District and Kapurthala State, and parts of districts Sialkot, Gujranwala, Lahore, Ferozepore, Jullundur, Hoshiārpur and Gurdāspur.

The party left recess quarters Mussooric on the 27th October and reopened on the lst May. The field head-quarters were at Lahore throughout the field season.

The health of the party was very good throughout the year.
Topography.-No. 2 (late 15) Party surveyed an area of 7,369 square miles in Amritsar, Sialkot, Gujranwala, Lahore, Ferozepore, Jullundur, Hoshiārpur and Gurdāspur districts and Kapurthala State, about three-quarters of this was revision of previous 1 -inch maps, and the remainder new survey. Except for a small bit of Siwālik hills in the north-east, the country was fairly open plains, of which more than half was well irrigated by perennial canals.

The party was in the field 6 months, and the average staff actually out in the field surveying, apart from men sent to Delhi and plotting, was 4 assistants, 32 surveyors and 6 beginners, the outturn being 29 sheets.

The field work was at first delayed by the necessity of keeping one section for 2 months plotting traverse data in the field, and later by the sudden transfer of 1 officer and 4 men to special work at Delhi.

The topography was divided into 4 camps under the 4 Provincial Officers Subedar Kanak Singh, Mr. Saubolle, Mr. O'Sullivan and Mr. McCraken.

Mr. O'Sullivan with 4 surveyors and 5 draftsmen was employed in plotting traverse data for the new survey up till middle of January.

About $\frac{3}{4}$ of the work was revision survey on 1 -inch blue prints of old 1 -inch sheets. New survey based on plotted trijunctions was only necessary in Sialkot, Gurdaspur and Amritsor districts, with the exception of sheets $44 \frac{1}{10,16,16}$ in Amritsar district, for which previous 1 -inch maps were available.

The Siwālik portion of $44 \frac{\mathrm{~s}}{14}$ was revised on $1 \frac{1}{2}$.inch blue prints.
No new triangulation or traversing were required.
A detailed analysis of outturn gives most confusing results, and I can only roughly gather that under more settled circumstances we might expect bet:seen 40 and 50 miles of 1 -inch revision survey and between 30 and 40 miles of 1 -inch new survey per man per month. The actual average for the work for the whole season appears to be about 38 miles.

The cost-rates for the field season's work do not appear to afford satisfactory results in regard to the comparative costs of different kinds of survey, but give a rough average cost of Rs. 8.5 per square mile for field work, and Rs. 3.2 for fair mapping of the regular work of the party, excluding the cost of special areas, and other extraneous charses not pertaining directly to the party.

Recess duties.--'The whole of the fair mapping was completed and sent in by the end of recess, and the party has no arrears of work of any kind on hand.

Owing to a variety of causes, (e.g., the number of inferior draftsmen who had to be employed in order to get the work through and the charges of personnel during the early part of the recess), the fair drawing has not been altogether satisfactory in point of neatness or uniformity.

The fair drawing was made from $1 \frac{1}{2}$-inch blue prints on tracing; paper which were enlarged by photography from the l-inch plane-tables. A great deal of delay and a certain amount of inaccuracy arose from all the canals in blue failing to appear on these blue prints, so that they had to be entered up on them liy hand with proportional onmpasses.

Arrangements are to be tried in the coming sezson to prevent a recurrence of this difficulty.

My Captain M. N. MacLeod, R.E.
The country survered consisted of the alluvial plains of the Ganges valley and comprised portions of the following districts of the United Provinces:-
Hardoi, Farukhābād, Moradābād,

Captain A. A. McHarg, R.E., in charge from lst Octoher 1911 to 23rd March 1912.
Captain M. N. MacLend, R.E., in charge from $23 x$ S September 1912.
Lieutenant A. A. Chase, R.E., in charge from 15 th May 1912 to 22 nd September 1912.
Lieutinant R. 8. Wahab. I.A., atlached from 1st October 19$] 1$ to 11th October 1911 and from 21st April 1912.

Provincial Officers.

Mr. B. M. Berrill, in charge from 24th March 1912 to 14th May 1912.
Mr. A. C. Bose.
Mr. P. A. T. Kenny.
Mr. H. C. W. Stotesbury, from lst October 1911 to 2 1st February 1912
Mr. B. C. Newland, from lst October 1911 to let December 1911.
Mr. A. J. A. Drake.
Mr. F. H. Grant.
Mr. F. J. Grico.
Mr. J. A. Calvert, from lst October to 28th October 1911.

Upper Subordinate Service.
Mr. Lutf Ali, Probationer.
Louer Subordinate Service.
16 Surveyors, permanent.
1: Survevors, temporary.
6 Soldier Surveyors.
2 Clerks
8 Temporary Draftsmen, Typers, and Pupil Surveyors.

Budaun, Bareilly, Etah, Shahjahänpur, and a small portion of Rāmpur State.

The whole area under survey was cultivated, poppy and sugarcane being the most valuable crops.

The country was flat with a few sandy koolls, but the level of the small portion of the country west of the Ganges from Kanauj in the south-east corner to Fatehgarh, (where the right bank of the Ganges has a relative height of 25 to 30 feet), and thence in a north-west direction away from the river, is perceptibly higher thin the country between the Ganges and the Ramganga, the level rises again east of the Ramganga.

Except to the north-west of Farukhābād where the course of the Ganges has moved eastward, the courses of both the Ganges and the Ramganga appear to have been oscillatory.

From the quantity and quality of the crops along the Ramganga river it would appear that the silt deposited by this river is richer than that of the Ganges.

Though the country cannot be called well wooded, there are numerous mango groves, and all the main roads have good avenues of trees.

The field office opened at Bareilly on November lst and closed on April 20th. The recess office opened at Mussonrie on April 25th. The health of the party was generally good.

Topography.-The area surveyed during the year was $6187 \cdot 38$ square miles
 231 -inch sheets in all. The whole of this was revision survey on the scale of 1 inch $=1$ mile. Sheet $54-\frac{\mathrm{M}}{16}-$ formed part of the programme, but could not be completed, as the greater portion of it lay within the Bilgram tahsil, for which the traverse data were insufficient. With this exception the programme laid down for the field season was completed.

The work was carried out on blue prints of the latest edition of the existing 1 -inch maps in new 1 -inch sheet sizes. Thesc, except in the country near the large rivers where these had changed their courses, were generally found to be most accurate.

Two blue prints of the Budaun district were received without trijunctions and in these two field sections the trijunctions were surveyed by fixing from junctions of roads, corners of villages and other well-defined points which could be identified on the ground.
G. 'I'. points throughout the area were few and far between and lines of levelling with G. T. Bench-marks only ran through 4 sheets, but considerable use was also made of old level charts for fixing heights.

The party was divided into 5 camps as under :-
I. Mr. B. M. Berrill, E. A.S., up to 23 rd March 1912 and Mr. F. J. Girice,
S. A. S., from 24th March 1912 with 9 surveyors at Fatehgarh.
II. Mr. A. C. Bose, J. A. S., with 8 surveyors at Chandausi.
III. Mr. P. A. T. Kenny, E. A. S., with 8 survegors, at Budaun.
IV. IIr. A. J. A. Drake, S. A. S., with 6 surveyors at Shahjahānpur.
V. Mr. F. H. Grant, S. A. S., with t surveyors at Moradābäd.

No triangulation or traversing were done by the party during the year.
The arerage outturn per man per month was 34.9 square miles and the cost-rates were, 1 -inch revision survey, Rs. $9-0-4$ per square mile, and fair mapping, Rs. 4-12-6 per square mile. The outturn was rather small considering the nature of the work, but the average was considerably lessened by one provincial officer and 10 of the best surveyors being deputed to the Delhi 4 -inch $=1$ mile survey at a time when work was in full swing.

Recess duties.-During the recess the whole 231 -inch sheets surveyed were fair mapped on the $1 \frac{1}{2}$-inch scale. Fifteen of these have been completed and submitted to the Superintendent, Northern Circle, and the remainder will he sent in by October löth.

The spelling of village names has again given trouble. It would appear that the best solution of the difficulty is for camp officers to take the local pronunciation and to decide the correct spelling " on the spot". District officials have neither the time nor the inclination to correct long lists of names, particularly in the United Provinces, where it is not uncommon to find 400 or 500 names in a shect.

Though there were no contour sheets to he prepared the time usually spent on them was fully taken up by the extra typing necessary on account of the large number of villages, and it, was found that in order to complete the 23 sheets during : $\frac{1}{2}$ months of recess, it was necessary to arrange that typing should proceed concurrently with the outline drawing, the draftsmen working from 6 A.s. till noon and the typer from noon till 6 p.m. or else one of them working on Saturday and Sumday and taking two days' leave during the week.

To carry out this system satisfactorily it is imperative that the spelling of all names should be checked and the correct spelling entered on the plane-table sections while in the field, so that the section officer on arrival in recess is free to dernte his time to the examination of traces, the preparation of guides for the typers and the supervision of the drawing.

Unfortunately owing to the very great expansion and contraction of the blue prints on which the surcer was done, it was impossible to enlarge them to correct dimensions, and this precluded the possibility of fair drawing direct on to blue prints.

This excessive expansion and contraction is principally due to the necessity of wetting such prints before mounting, and, where it is otherwise possible to obtain blue prints on drawing paper for fair drawing, it would be preferable to have the prints of previous work separate on tracing paper, and transfer them by hand on to a board previously mounted and allowed to dry. This would entail some extra labour on taking the field, but it is probable that the field sections would not be too distorted to permit of the onlargements being made to
scale and printed direct on to drawing paper, and much labour would thus be saved during the recess.

The map of Delhi and vicinity on the scale 4 inches $=1$ mile, surveyed by the Dolhi Detachment in April and May 1912, was drawn and will be published by 15th October 1912.

There were no computations to be done in recess and no arrears of drawing, etc., at the close of it.

No. 4 Party (UNITED PROVINCES).

By Captain L. C. Thoiliter, I.A.
The field head-quarters of the party remained at Sitapur throughout the

Pbebonnel.
Imperial Officers.
Captain L. C. Thuillier, I.A., in charge.
Lieutonant F. B. Scott, I.A.
Provincial Officers.
Mr. G. J. S. Rae.
Mr. H. W. Biggie.
Mr. C. E. C. F'rench.
Mr. J. C. Lears, from 13th December 1911.
Mr. A. B. Hunter.
Mr. G. E. R. Cooper.
Mr. J. A. Calvert, from 29th October 1911
to 29th Nay 1912.
Mr. A. F. Murphy, from 11th October 1911.
Upper Subordinate Service.
Jemadar Mohammad Husain Khan.
Lower Subordinate Service.
34 Surveyors.
1 Traverser.
9 Draftsmen.
4 Computers.
2 Clerss.
2 Typers.
6 Soldier Surveyors.
field season; the recess head-quarters continued at Mussoorie.

The cantonment section had its field and recess quarters at Quetta, as field work was continued there throughout the year.

The programme of the party and locale of operations continued in the United Provinces.

The country under survey consisted for the most part of similar country to that surveyed last season, viz.:-a flat plain generally well cultivated and interspersed with an abundance of groves and occasional stretches of "usar" plains. On the east of the work, however, along the Gogra river and its tributaries, occurred a broad tract of country lying at a lower level than the surrounding plain and cut up by innumerable streams and backwaters. This country for the first 2 to 3 months was considerably flooded. The Gogra was the only large river in the area under survey this season. The Gumti, which is a considerably smaller river, ran through two or three of the sheets under survey.

The field season commenced on the 30th of October 1911 and closed on the 6th of April 1912.

The health of the party was good throughout the season. Plague occurred during the season, but was not really so severe as the previous season, and no cases occurred among the party. Onc case of cholera occurred which unfortunately ended fatally. Though it was expected that in the Gogra tracts men would suffer from fever, this did not occur, possibly owing to the issue of quinine for a month before taking the ficld.

Topography.-The programme of this work consisted of the survey on the 1-inch scale of sheets $63_{3,4,7,8,10,11,12,16,10}$ and $63_{3,4,7,4} \frac{\mathrm{E}}{10,}$, and the supplementary

Sheets $63 \frac{A}{1 \bar{k}^{2}}$ wcre subsequently cut out of the programme, as the party had to send surveyors to do special work at Delhi.
'The whole area for survey lay in the districts of Sitapur, Hardoi, Kheri, Lucknow, Balıraich and Bara Banki.

The area in distriots Kheri and Bahraich was merely supplementary survey, as the current maps of these portions had been compiled from 16 -inch cadastral
surveys carried out only about 15 to 17 years ago. The remaining portions had not been surveyed since the original survey done about $1860-63$, and, as the old maps were much wanting in detail, and also were of practically no use to surveyors, it was considered advisable to survey the whole area anew.

A certain number of surveyors and draftsmen were kept at head-quarters to. complete the fair sheets which were not completed in recess. This was found a much longer job than was originally anticipated, and the last sheets did not go in till March.

At the end of March, 6 surveyors, under Mr. Calvert, were sent to Delhi to do special work there under Lieutenant Chase.

Field work continued till early in April when the head-quarters of the party and the majority of the surveyors proceeded to recess quarters, Mr. J. C. Lears and one or two surveyors remaining behind for a short time to complete their work.

The surveyors for topographical work were distributed into 5 camps under Lieutenant Scott, Messrs. G. J. S. Rae, H. W. Biggie, A. B. Hunter and G. E. R. Cooper.

Lieutenant Scott's camp consisted of Jemadar Mohammad Husain Khan, U. S. S., 4 surveyors and 1 soldier surveyor. The camp's operations lay in the eastern portion of the party's work along the Gogra river in districts Kheri, Sitapur, Bahraich and Bara Banki.

Mr. Rae's camp consisted of 4 surveyors only. The camp's operations lay in the northern portion of the party's area, in districts Kheri and part of Sitapur.

Mr. Biggie's camp consisted of Mr. Calvert and 8 surveyors and 2 soldier surveyors. The camp's operations lay in the western portion of the party'sarea, in districts Hardoi and Sitapur.

Mr. Hunter's camp consisted of Mr. Marphy, 6 surveyors and 3 soldier surveyors. The camp's operations lay in the western centre of the party's. area, in district Sitapur.

Mr. Cooper's camp consisted of 7 surveyors and 2 soldier surveyors. The camp's operations lay in the eastern centre of the party's area, in districts. Sitapur, Lucknow and Bara Banki.

Towards the end of the field season, a slight redistribution of surveyors was found necessary to complete the work.

The average rate of plane-tabling (excluding the time taken by the men in marching to their work), was 36.89 square miles per mensem for survey and 66.34 square miles per mensem for supplementary survey.

The cost-rates were as under:-
Detail survey, 1 -inch scale, 5,807 square miles at Rs. 10.04 per square mile.
Traversing.-This only consisted this season of running supplementary lines of traverse, where it was found that surveyors were short of points on which t_{1} adjust their work.

Cantonnent Surveys.-This section was under Mr. C. E. C. French with 2 computers, 5 surveyors, 2 draftsmen, 1 typer and 55 menials.

The only Cantonment taken up during the year under report was that of Quetta.

We were requested to carry out the following surveys:-
(a) The survey of Quetta Cantonment on the scale 16 inches $=1$ mile, area alout 17 square miles.
(b) A survey of the Fort, scale 50 feet $=1$ inch, area about 53 acres.
(c) A survey of some 700 acres of waste land lying north-west of cantonment limits for the extension of ranges.
The 16 -inch map of the cantonment was to show contours at 5 fect vertical interval.

Later on we were requested by the Civil authorities to do a survey of Quetta Civil Station on the scale of 16 inches to 1 mile comprising an area of about 1,100 acres.

These surveys are still going on, but the field work should be completed by December. The fair drawing is being carried on, where possible, at the same time as the field work.

Proofs of 5 cantonments were received for colouring during the year, viz. : 一 Allabābād, Hyderābād, Risālpur, Loralai and Fort Sandeman.

The area surveyed during the season and cost-rates are not jet available, as the survey of Quetta Cantonment is not completed.

The total cost of this section for the year was Rs. 21,206.
Recess duties.-All fair maps of the sheets surveyed during the field season were completed and sent for pullication before the end of the recess. This was a considerable improvement on last season as no sheets were sent for publication before the end of recess last year. The previous season's work had however been a useful experience, and by altering the system, we were able to complete our fair mapping of 22 sheets during the recess.

RIVERAIN DETACHMENT.

By Mi. Mata Das Puri, R.s.
The office of the detachment remained at Multan throughout the field

Pebsonnbl.
Provincial Officers.
Mr. Maya Das Puri, R.S., in charge.
Mr. Moqim-ud-din.
Upper Subordinale Service.
Mr. Cbuni Ial Kapur.
Lonver Subordinate Service.
2 Surveyors.
35 Traversers.
25 Draftemen.
27 Computers.
2 Clerks.
Settlement Staff.
Mnlik Wali Rām, Tahsildar.
Mir Ninzir Ahmed, do.
Mehta Gand Rum, Naib Tahsildar. Malik Ahmedyar Klian, ditto.
Sheikh Mahbüb Ali, ditto.
Chaulhri Jalã Din, ditto.
Chaudhri Inazm Din, ditto.
Mian Ghulam Mutnza, difto.
28 Kanungor.
120 Patnaris.
1 Reader.
1 Názir.
3 Clerks.
9 Moharmirs.
1 Sub-Assistant Surgeod.
season, and returned to Lahore on 20th June 1912 for recess. It was shifted again to Muitān on various dates during September 191%.

The riverain area under survey was broken, shirubby, sandy, and marshy. Portions of viliages, situated above the high banks, were well cultivated, and parts of the Una and Garhsbanker tahsils were hilly.

The Lower Bari Doüb tract was flat, in parts heavily wooded and covered with forest reserves and small sand hills, sparsely inbabited towards the north near the Rāvi: and mostly waterless and unpopulated.

The ficld season commenced on lst October 1911, and closed in the middle of

June 1912. The Lower Bari Doäb work was re-started on the lst of Scptember 1912.

The health of the dolachment was good all round the year. Two khalāsis and two computers died.

I. The Riverain Survey.

(a) Work done for the cadastral surveys of Riverain estates.

The detaohment continued its work of traversing and laying down base lines during the year. $332 \cdot 95$ linear miles of main traverse, and $1911 \cdot 26$ linear miles of minor traverse were run; 8,541 theodolite stations were fixed along the banks of the rivers Sutlej, Rāvj, Chenāb and Jhelum in distriots Hoshiārpur, Ambālā, Ferozepore, Lahore, Montgomery, Sialkot, Gujrat, Shabpur, and Jhelum; and 492 corners of 164 squares were marked with permanent mark-stones on both banks of the Sutlej and the Jhelum to serve as bases for the fature demarcation of boundaries in the bed of the rivers. 1,997 plotted and 485 boundary masävis, (settlement mapping sheets), of 328 villages were completed, and 30 fourinch shects were traced and supplied in time to the Settlement Officers of Hoshiārpur, Una, Ferozepore, Sialkot, and Shalpur.
Besides these 129 miscellaneous traces were prepared, and all the traverse stations, laid out during the season, were plotted on 28 four-inch sheets.

The following tro tables show the outdoor and office work done for cadastral survey :-

. 1 -OUTDOOR WORK.

Scules $200, ~ Q 20,1913$, and 190 , fect $=$ One inch.

B.-OFFICE WORK.

Besides these 129 miscellaneous traces were prepared during the year.
(b) Work done for the 4 -inch compilation of Riverain boundaries.

20 sheets were plotted and compiled, 23 sheets finally completed, 10 sheets typed ; and 371 villages were reduced by pantograph to the scale 4 inches=one mile.

The progress of the work is clearly shown in the table below :-

Name of River.	Name of the series.	No. of slicets plotted ard compiled.	No. of sheets finally examined.	No. of sheets typud.	Remagis.
Sutlej	Jullundur. Ferozepre.	\ldots	\cdots	$\frac{4}{8}$	
Sutlej	H eshiàrpur. Ambāla.	\cdots	1	33_{6}^{4}	
Sut.jej	$\frac{\text { Ferozepore. }}{\text { Kapurthala State. }}$	\ldots	1	1	In addition to these sheets the settle-
Jhelum	Jhelum. Shahpur.	...	2	...	ment maps of 371 villages were reduced by panto-
Jhelum	Shabpur.	\ldots	9	\ldots	graph.
Jhelum	Jhelum. G ujrat.	\cdots	4	\ldots	
Chenãb	$\frac{\text { Shahpur. }}{\text { Gujranwala. }}$	\cdots	...	5	
Ravi	Montgomery.	15	\cdots	\cdots	
Rāvi	Lahore.	...	6	\ldots	
Jumna	Amlăla. Sahāranpur and Karnal.	5	\ldots	...	
	Total	20	23	10	

II. The Lower Bari Doāb 25-acre Rectangular Survey.

This work was carried over the remaining tract commanded by the Lower Bari Doäb Canal. The Settlement Staff continued joining the detachment till late in December 1911, and consequently a considerable time was spent in training the hands. As after May 1912 it became very difficult to work out during the day time on account of excessive heat, scarcity of water, and dust storms, the field operations were temporarily stopped in the middle of June 1912 and restarted on the 1st of September 1912.

The whole of the Settlement Staff was employed on this class of work; and the two Sub-Assistant Superintendents with 20 traversers assisted in forming blocks of 80 to 100 rectangles.

In all $\mathbf{5 5 , 0 0 0}$ (fifty-five thousand), $\mathbf{2 5}$-acre rectangles were broken. Nearly 40 per cent. of the work was tested by the Naib Tahsildars, Tahsildars and the Survey Officers; and 15 per cent. was checked with theodolite traverse. 4,782 linear miles of traverse were done and 13,788 theodolite stations were fixed.

The maximum linear error admissible was one in every five hundred except in very few cases where the error was allowed a little heavier than this from base to base, because the traverse values from which the bases had been originally computed we ee not so good; and it was not possible to better them then. The base line pillars were shifted and put right wherever they were found out of their true positions. This retarded the progress of work considerably.

As the initial bearing of the base lines was doubtful within 5^{\prime}, and there was also linear error in the work, in several cases the angular work between two bases generally 10 to 12 rectangles apart, was closed by allowing $\frac{1^{\prime}}{}{ }^{\prime}$ per corner of a rectangle, or 1^{\prime} per theodolite station while breaking the intermediate rectangles. In all such cases the angular work of traversers was carefully checked in order to ascertain that there was no serious error in their work.

With the view to save time and unnecessary labour 100 feet instead of 66 feet chains were used in the Lower Bari Doāb computations for the purpose of eutting the 25 -acre rectangles.

The method of distributing errors and general procedure adopted, was the same as described in the last year's report.

The riverain main circuits on the Sutlej were connected with Karni Khera T. S., and Pir (ihani T. S., and on the Chenãb with Jeto 'J. S., Bala T. S., Sadulapur T. S., Hela I'. S., and Ranjit Garh 'J. S.

The Lower Bari Doāb traverse was connected with Mega I. S. for laying out extra base lines near the Rāvi river.

The arerage errors in the riverain work were:-
(a) Main circuits.

Angular crror 3": 2 per station.
Linear error $0 \cdot 10$ link per 10 chains.
(b) Minor traverses.

Angular crror 2" per station.
Linear error 0.39 liak per 10 chains.
(c) Base lines.

Error per corner 3 fect in direct distance, when compared with its lieoretical value.

The temporary riverain khaleisis were paid directly by the Settlement officers concerned. The total expenditure of the detachment from 1st October 1011 to 30th September 1912, excluding the pay of the above men, was Rs. 2,26,002 as detailed below:-

硣	Rs.
Riverain	24,969
Jower Bari Doãh	$2,00,981$
Delhi Survey	52
Total	2,26,002

THE SPRCIAL DELHI SURVEY DETACHMENT.

By Major C. H. D. Ryder, D.S.0., R.E.

Owing to the transfer of the Capital of India from Calcutta to Delhi, a Town-planning Committee was sent from England. In order that all information should be ready on their arrival, a detachment was formed to carry out the work. This detachment was in charge of Lieutenant A. A. Chase, R.E., with Syed Zille Hasnain, the officer in charge of No. 17 Party, in charge of the levelling.

On the 18th of March orders were issued for a revision survey on the 4 -inch scale together with contours at 5 feet vertical interval of Delbi and the vicinity. 18 surveyors, 3 provincial officers and a levelling detachment of 4) levellers and a provincial officer in charge arrived in Delhi, the former by 30th March, the latter by 29th March.

It was decided that the area should be revised on blue prints on drawing paper of the old 4 -inch Revenue survey in the ordinary way. These blue prints arrived in Delhi on 29th March.

It was pointed out that the Town-planning Committee would arrive on the 14th April, and that, as the Committee could do little without the aid of a 4 -inch contrured map, it was essential that copies should be got out with the utmost experlition.

As the copies of maps were urgently required, it was decided to send in 3 plang-tables each night by 9 p.m. to head-quarters, where these were traced during the night and returned to the plane-tablers by 5 A.m., so that the traces kept pace with the survey.

The exact area to be surveyed could not be actually defined until the Committec arrived, but it was realized that there was information regarding levels north of Delbi and none south, and that what is known as the "southern site" was the more important, and so it was decided to concentrate the surveyors and levelling detachment south of Delhi, and to rely on the existing 2-inch survey of 1910-11 and Irrigation Department levels for the north of the city.

As there were not sufficient triangulated heights in the area under revision, the sorveyors were instructed to leave the contouring until the detail was survey'd, and the levelling detachment were instructed to run in the meantime a network of levels which would give lines most useful to an engineer, as well as giving numbers of heights to surveyors.

Level lincs were thercfore run along nullahs, and in some few cases aloug ridges, traces of the level lincs with descriptions and reduced levels were given to tie surveyors concerned at the end of each day's work to enable the latter to fix the position of these on the plane-tables as their work progressed.

On April 24th, the Committce gave their opinion that the area being revised was probably sufficient for their purpose.

The detail survey was finished by April 25th, and by this time levels. had heen run practically all over the area under survey and over whioh Irrigation Department levels were not available.

On the 1th Mny, the Committec decided that the area under revision should be extended slightly. Levellers and surveyors, who had practically all con:e in to head-quarters by this date, were sent out to do this extra detail, whioh it was decided to insert ou the traces, after copies of the area first agreed upon had been delivered.

By the 5th May the contouring mas finished, and on the 7th of May the traces were sent to Calcutta for a randyked edition, 30 oopies in black and brown being delivered into the hands of the Committee on the 13th of May.

On the 2?nd of May, the extra aren had been levelled, surveyed, contoured and inserted on the traces, and these traces have since been sent for a further edition in black and brown with level lines surprinted in red.

The map was fair drawn in four sheets with great rapidily, and the Townplanning Committec were supplied with all the copies required.

HENRY CHARLES HUBERT COOPER,
Born-5th August 1874.
Died-27th November 1912.

SOUTHERN CIRCLE.

(Fide Index Maps 2 and 5.)
The Southern Circle was under the superintendence of Brevet-Colonel T. F. B. Renny-Tailyour, C.S.I., R.E., throughout the year:

The circle consisted of Nos. 5, 6, 7 and 8 Parties.
During the year $9,11 \mathrm{~s}$ square miles were survejed, 7,614 aquare miles were triangulated and 889 linear miles were traversed by theodolite. The cantonment of Santa Cruz was also surveyed.

The survey consisted of :-
5,670 square miles of 1 -inch survey.

J,329	$"$	$"$	", \quad revision survey.
1,341	$"$	$"$	$", 1 \frac{1}{2}$-inch survey.
119	$"$	$"$	$", \quad$ revision survey.
656	$"$	$"$,	" 2 -inch survey.

The smallness of the outturn is principally due to the partics being under strength, to the large arca and the difficult nature of the reserved forests and to the extremely intricate character of the country along the west coast of Madras.

Descriptions of experiments as reyards the plane-tabling and fair mapping are given in the reports of Nos. 6 and 7 Parties.

Notr.-The following method of muating a mill board fur plane-tabling was augested by Mr. A. Ewing and was given a trial, with very satisfactory resulte, during the fiold season in this circle : -
(i) Cut down a piece of mill board to 30 inches $\times 24$ inches, that is, to the size of a plane-table.
(ii) Paste sheets of rag-litho paper firmly on both sides of the mill board. This is done to avoid the colour from the mill board staining the drawing paper whon mounted.
(iii) Paste a oheet of 210 lbs . drawing paper 30 inches $\times 24$ inches on to the centre of a piece of malmal or any fine white cloth 42 inches $\times 36$ inches. This should be done on an ordinary table, the cloth should firat be washed and, after the drawing paper has been pasted on to it, should be stretohed and pinned down to the table and allowed to dry for a couple of days.
(iv) The mounted sheet of drawing paper shoull then be lightly pasted on the mill board.
(v) Cut the cloth that projects round the mill board into strips about 4 inches wide and paste alternate strips under the mill board.
(vi) The mounted mill board should, if possible, be passed through a printing press.
(vii) Project and plot the board.
(viii) Place the mill board on a plane-table and paste the other strips, refered to in (1), under the plane. table, but only about 3 inches at the ende of the strips should actuglly be pasted, so that, when the plane-table capands or contracts in the field, the loose cloth will give to it.
N.H. - When working in a vary damp climate the mill board should be varnished and allowed to dry before boing mounted. Metal coiner clips could be used for fixing the mill board on the plane-table, but pasting is better as a surveyor can very easily take off the mill board and repaste it if he finds that the mill board does not lie llat on the plane-table.

No. 5 PARTY (CEN'TRAL PROVINCES).

by linutenant K. W. Pye, R.E.
The programme of the party included survey and revision survey on the

Personnel.
 Imperial O.ffers.

Major C. L. Brobertson, C.M.G., R.E., to 19th Merch 1912, and in charge to 31st January 1912 and from 11th March 1912 to 19th March 1912.
Lieutenent K. W. Pye, \mathcal{K} E., from 1bt January 1912, and in oharge from lat february 1912 to 10th March $19!2$ and from 2inth March 1912.
Jieutenant C. G. Lewis, R.E., from lat June 1912.

Lieutenant C'. F. Nation, R.E., 10 2ad December 1911.

1 -inch scale and triangulation in parts of degree sheets $55-\mathrm{I}, 55-\mathrm{J}, 55-\mathrm{K}, 5 \overline{5}-\mathrm{O}$ and 61-A, comprising portions of the Gwalior and Bhopāl States of Central India and of the Hoshangābād, Narsinghpur, Chindwāra, Seonī, Betūl, Nāgpur, Bhandāra and Jubbulpore districts of the Central Provinces.

Provincial Officers.

Mr. F. P. Walah.
Mr. J. H. S. Wilson from 20th May 1912.
M :. S. S. MoA'Fee Fielding from 22nd May 191%.
Mr. P. Kennegy from 15th Novomber 1911 to 30th June 1912.
Mr. C. West.
Mr. F. C. Pilcher.
Mr. Munshi Lal.
Mr. C. O. Picard.

Opper Subordinate Service.
Mr. Elnath Buttu.
Mr. Ram Narayan Hastir.

Lower Subordinato Service.

23 Surveyors.

3 Soldier surveyors.
3 Computers.
2 Pupil survejors.
2 Clerks.

Sheets $55 \frac{1}{4}$ and $5 \overline{0} \frac{\mathrm{~J}}{2, \theta, 7,10}$ contained some very broken and difficult country, the country in sheets $55 \frac{1}{8}$ and $55_{\frac{1}{8}, 13}$ was flat or undulating, while in the remainder of the sheets the country was of a varied nature.
The field season opened at Jubbulpore on the 3rd November 1911 and closed at the same place on the 8th May 1912.

During most of the field season the head-quarters of the party was located at Pachmarhī.

The health of the party was fair.
Topography.-To carry out the 1 -inch survey three camps were formed while two surveyors working independently were deputed to complete the area for revision survey in the Jubbulpore district which had been commenced in the previous year. The following allotment of work was made :-

No. 1 camp, sheets $5{ }^{5} \underset{2,3,4,7}{1}$ in the Gwalior and Bhopàl States.
No. 2 camp, shcets $55_{\frac{2}{2,6,7,10}}$ in the Hoshangālād, Chindwãra, Betūl and Narsinghpur districts.

No. 3 camp, sheets $55 \frac{1}{\overline{6}}$ and $55_{\overline{9}, 1 \overline{3}}^{T}$ in the Bhopāl State and in the Hoshangābād and Narsinghpur districts.

Revision survey, sheets $64 \frac{A}{2,3,0,7}$ in the Jubbulpore district.
The survey of all the above sheets was completed except shect $55 \frac{3}{10}$ which remained unfinished at the close of the season. The outturns mere 2,669 square miles of 1 -inch survey and 904 square miles of 1 -inch revision survey, making a total of 3,473 square miles.

Triangulation. -Three officers were employed on triangulation and com-
 Seoni districts. The country extended over the long southern wooded slopes of the Central Provinces plateau down to the low undulating country round Nágpur. The area triangulated amounted to 2,493 square miles.

Recess duties. -The mapping of the revision sheets $64 \frac{1}{2,3,0,7}$ was handed over to the Southern Circle Drawing Office and ten sheets, viz., $55_{\frac{2,3,4}{} \frac{1}{2, i, 8}}$ and $55 \underset{2,0, \bar{\sigma}, 0,13}{ }$ were left in hand for fair drawing, these latter sheets were completed by the end of the recess. Of sheet $5.5 \frac{3}{7}$, which contained the heaviest work of any sheet, the party was fortunate in obtaining enlargements on tracing paper sufficiently true to scale to enable them to be pasted on to the prick-off sheet and vandyked direct. Of one other sheet half was cnlarged and printed on drawing paper as a direct drawing print, the other half being transferred by hand, while the remaining sheets were prepared by the method of vandyking traces.

The computation of the triangulation for the ensuing season's work was completed during the recess. Three degree charts, viz., $55 \mathrm{I}, 55 \mathrm{M}$ and 54 P , with tables of data were prepared.

No. 6 PARTY (BERÃR AND HYDERABXD).
By Majoll h. Wood, R.E.
The work of the party continued in the previous theatre of operations, viz., Berār and Hyderābād.

Personnel.

Imperial Officers.

Major H. Wood, R.E., from 17th December 1911 and in charge from 19th December 1911.
Lieutenant K. W. Pre, R.E., to 31 let December 1911 and in charge to 18th Necember 1911.
Lieutenant C. F. Nation, R.E., from 3rd
December 1911 to 3rd April 1912.

Provincial Officers.

Mr. J. H. S. Wilson to 19 th Mny 1912.
Mr. P. R. Anderaon to 15th October 1911.
Mr. E. A. Meyer.
Mr. F. B. Kitchen.
Mr. R. R. Gildea.
Mr. J. O'C. Fitzpatrick.
Mr. A. J. Moore.
Mr. A. V. Dickson from 14th October 1911.

Upper Subordinate Scrvice.
Mr. Dharmu to 22nd May 1912 and from 23id August 1012.

Lower Subordinate Service.

19 Surveyors.
1 Soldier surveyor.
1 Draftsinan.
6 Traversers.
2 Computers.
5 Pupil survegors.
2 Clejks.
1 Sub-aspistant surgeon.

The scene of survey lay in the valley of: the Pengangà river and the hills lying to the north and south of it. The country on the west of the area was mostly open plateaux but, where they descend, the falt to the river is abrupt, and here the streams have cut deep ravines, making the country intricate and broken.

The field season began on the 14th October 1911 and closed on the 8th May 1912, lasting practically 7 months but, as the traverse camp began work a month before the rest of the party and one triangulator remained out until the middle of Junc, the field season for a considerable portion of the party was nearly 8 months in duration. The head-quarters of the party was located at Bāsim.

The health of the party, notwithstanding: the fact that for the greater part of the season it was working in the unhealthiest part of Berār, was good; the surveyors and khalāsis suffered to some extent from fever, but these attacks did not last long and were not severe.

Topography.-As a considerable area of the country that would fall under survey in the next 2 or 3 years consisted of reservel forests, it was decided to survey as much of these forcsts as possible in advance of the general programme. This plan was adopted as much of the forest area is in small patches with very complicated boundaries and it had been found necessary to survey large arcas outside the forests so as to adjust the margins of the work on the two scales. By surveying the forests in the year previous to the general survey on the 1 -inch scale it will only be necessary to survey on the larger scale up to the forest boundaries as during the recess the forest survey can be reduced by photography to the 1 -inch scale and the results transferred to the 1 -inch plane table sections in bluc. The surveyor will use this in the ordinary way laid down for treating previously surveyed forests. This plan will also expedite the fair mapping as all the country will be on the l-inch plane-table sections and there will be no troublesome adjustments on the traces between reductions and enlargements. For this reason the whole party, with the exception of the men under instruction and a few of the younger hands, was employed after Christmas entircly on forest work which fell in the area proposed for survey in the year 1912-13.

At the beginning of the senson the surveyors were formed into two camjs: under Messrs. Wilson and Kitchen and were employed practically entirely on

1-inch work. After Christmas when the forests became more open, one camp, consisting of the men under training with one or two young surveyors, was formed under Mr. Meyer to complete the 1-inch programme, while the rest of the party was divided into two forest camps under Messrs. Wilson and Kitchen. A month before the close of the season another forest camp under Mr. Gildea was formed to survey a detached area.
W ith the exception of about 100 square miles of forest for survey on the 2 -inch scale, the programme of the party was completed. Sheets $56_{1,5,6,0,13}$, were completely surveyed on the 1 -inch and 2 -inch scales and in addition the reserved forests in sheets $56 \underset{10,14,15}{\mathrm{E}}$, and $56 \underset{1,6,0}{1,0}$. The outturn of survey was $1,74.5$ square miles of which 408 square miles were executed on the 2 -inch scale. The outturn per man per mensem (excluding men under training), was 19.2 and $8 \cdot 1$ square miles on the 1 -inch and 2 -inch scales respectively; this shows a falling "ff on last year on the 1 -inch scale but an improvement of over 60 per cent. on the 2 -inch scale. The lesser outturn on the small scale is accounted for by the fact that the ground was more difficult and also the better men were for the greater part of the season employed on the 2 -inch scale. This latter reason also accounts for the improvement on the larger scale which was also helped by the fact that the individual forests were much larger in area.

Triangulation.-Triangulation was executed by three officers, only two of whom however were employed at the same time. Sheets 55 $56 \frac{A}{1,6,4,13}$, amounting to 2,800 square miles, were triangulated. The country was on the whole open and should not prove difficult to survey.

Traversing.- 707 miles of reserved forest boundaries were traversed by theodolite and plots made on the 4 -inch scale. The traverse camp under Mr. Meyer took the field a month carlier than the rest of the party and five temporary traversers were engaged for 2 monthis so as to enable the work to be done in advance of the detail survey.

Cantonment Surveys.--The cantonment of Santa Cruz, which had been traversed at the close of the field season 1910-11, was surveyed on the 16 -inch scale at the beginning of the field scason under report. It is of very small extent and did not take long.

Recess dutics.-All the five standard sheets surveyed, viz.:--sheets $56 \underset{1, \overline{5}, 6,0,0,13}{\mathrm{E}}$, were fair mapped during the recess and in addition a sheet was drawn of the Santa Cruz Cantonment.

The computation of some of the intersected points of the triangulation was not completed nor was the final adjusiment of about 180 miles of the forest traverse. This latter could not be done as it was executed in country which was triangulated in the year under report and the computations were not ready in time. These arrears are of no importance as the work is not required during the ensuing season.

Nores. - Bristol boarda and drawing paper mounterd on mill loards were used during the field season for the field sections. A report has already been submitted on the results achieved and only the conclusion nrrived at need be referred to here, this was that, in the very dry atmosphere in which this party works during the ficld season, bristol boards were freer from distortion than drawing papor mounted on in ill boards and both were better than drawing paper monsted direction to the plan-table as in the old method. Tho best method of moanting the britel boarl was found to be to merely hold it down to the plane-table hy corner clips leaving it quite free to expand or contract, in all directions. When left perfectly free, expansion, etc., ecems to be almost proportional in all directions but, if it is fixed in any way, distortion invariably takes place. Bristol boards will Se ueed almost entircly for the field sections during the ensuing year and thog will all be mounted ao as to allory free expansion, etc., eight aluminium plane-tables will, it is hoped, be nlmo available for use and they seem to offer at present the beut solution of avoiding distortion in the field eections.

An experiment was tried this year of drawing all the fair sheets on bristol board. The stif board which oannot be beat is somewhat difficult both to draw and type on and also to eramine, but this defeot cannot be said to counteract the manifold advantages this board has for drawing on. Whether this adoadrage is an inhrant feature of brietol boards or whether it is due to the exceptionally amooth surfaee I am unable to say, bat it is undoubtedly easier to draw finer and better lines and to type better on it than on the old pattern thick rough surfaced drawing paper. The thinner and more flexible board is the easier to manipulate.

A second experiment was tried in the fair mapping during this year, namely, the typing of all names, eto., that will appear in black on the published map on an entirely separate sheet. This was tried in the hopes that a better published map would result as the reproduction office can give different exposares for the fine drawing and the relatively coarser typing. A final decision as to the result can only be given when the sheets are publishad but incidentally the experiment has certainly shown that the typing of names, etc., separately is a great advantage in a party office. Drawing and typing can go on simultaneously and, the typing being spread over a long time, only the more elficient men need be employed on it. Under the old system practically every man who had the smallest knowledge of English and typing bad to be emploged towards the end of the recess to get the sheets finished. Also a badly typed word can be erased and typed elsewhere without spoiling any of the drawing, while better typing is also done. 'There is nothing else on the sheet to distract the attention so the work can be bettercriticised and examined. The method undoubtedly will throw extra work on the reproducing offee as an extra plate has to be preparod but, as the registration has not to be very exact, this, except for the extria labour involved, need not be a tronblesome business. Eren if the published map is no better I thints the system a very good one and I would certainly like to try it again another year.

Experiments were also tried to find out which was the most convenient method of drawing the traces. The old method of preparing a separate traco for each 5 minute squere with separate traces for the detail and bill work is undoubtedly disalvantageous when the traces are transferred by vandyking, (as is acopted in this party), instead of by hand as in the older method. It was thouglat that making one irace for the whole shect would offer most advantage, but experiment has shown that a trace on the $l \frac{1}{3}$-inch acale for a whole l-inch sheet is too large and too cumbersome. It gets bent and creased in the preparation and even more so during the examination whioh is only done with great trouble. The general opinion after trying all possible groupings is that a strip of threo5 minute squares horizontally is about the best, but the sbape of the original plaue-table seotions also affecte the question. Another good arrangement is a block of 4 squares with a strip of 3 horizontally and another strip of 2 vertically. 3 squares horizontally or a square block of 4 seems to be about the limit which convenience of handling. imposes. Both hills and detail should be drawn on the same trace. It is advisable to use green instead of blue for perennial streams and other water on the traces, while boundaries for jungle and cultivation limits are best shown by fine green and yellow lines. The drawing of roads in fine lines on the fair map is belped by ahowing all the ronds on the trace in single lines, differentiating one class from ainother by different arrangements of breaks in the ines and if necessary hy also writing their classification alongside in fine lettering on the traces. By using a single line in the centre of the road the lines of double lined ronds are ensicr to draw finer, as the pen cannot be made to run'ss well over the blue vandyked lines as on the plain drawing paper and nlso the thickness of the inked line caunot be so well judged.

No. 7 PARTY (MADRAS).

By Mr. W. M. Gobman.

Personnel.

Imperial Officers.
Captain C. P. Gunter, R.E., in charge from 1st J une 1912 to 30th June 1912.
Licutenant J. D. Campbell, R.E., from lst June 1912 and in charge from lst July 1912.

Provincial Officers.

Mr. W. M. Gorman to loth June 1912 and in charge to 31st May 1912.
Mr. J. O'13. Donaghey to 6th February 1912 nud from lat June 1912.
Mr. P. IR. Anderson fyrm lst February 1912.
Mr. H. D. W. Stoterbury.
Mr. H. H. P. Hutterfich.
Mr. J. C. St. C. Pollett.
Upper Sulordinate Sorvice.
Mr. Abdul Hakik, K.S.
Mr. K. Mandanoa.

Lover Subordinate Service.

19 Surveyors.
2 Sildier surveyors.
1 Trnverser.
1 ('mmputer.
1 Typer.
5 Pupil surveyors.
2 Clerks.

The sphere of operations of the party lay in Malras, Mysore and Coorg. The work consisted of survey on the 1 -inch, $1{ }_{2}^{1}$-inch and 9 -inch scales, revision survey on the 1 -inch and $1 \frac{1}{9}$-inch scales and triangulation.

The nature of the country was extremely varied, from the low, undulating and intricate country on the west coast, consisting of cultivated valleys fringed with dense groves of palms and dotted with innumerable huts, to the densely wooded foot hills and bold crests of the Western Glats and further east the undulating Mysore platean.

The field season started on the 26th Nuvember 1911 and closed on the 29th. May 1912. The head-quarters of the party was located at Mangalore.

The health of the party was good during the field season with some exceptions. The bealth during recess has been fair.

The area surveyed fell in the South Kanara and Malabar districts of Madras, in the Hassan and Kadīr districts of Mysore and in the Pādinālknād tàluk of Coorg. The work was divided into three camps each under a provincial officer.
 completely surveyed and a portion of sheet $48-\frac{\mathrm{P}}{8}-$, amounting to 89 square miles, was also surveyed, making a total of 2,347 square miles.

Triangulation.-Triangulation was carried out by one provincial officer in the Salem and North Arcol districts of Madras and in the Kolār district of Mysore. Sheets $57 \frac{1}{i, 2,3,4, B, 0,7, \theta}$ amounting to 2,321 square miles were completed. The country triangulated is for the most part open, flat and cultivated excepting where the Mysore plateau falls away to the plains where there are forestclad hills.

Recess duties.-The fair mapping of the coast sheets is arduous owing to their extremely intricate nature. The fair mapping was divided into three drawing sections with an average of three sheets each. Sheets 48 is, 15 were completed during the year under report, and it is hoped that the remainder of the sheets surveyed, viz, sheets $48 \frac{\mathrm{~L}}{13}$ and $48 \underset{i, 2,3, \bar{i}, \overline{0}, 7, v}{\mathrm{P}}$, will be submitted br the middle of November 1912.

The computation of the triangulation of sheets $57, \overline{1,2,3,5,5,6,7,8}$, c., mpleted aud there are no arrears of computations. One triangulation chart 15 K has been practically completted and will be submitted before the end of the recess. It has been impossible to bring the triangulation charts of the party up to date as there has been no officer available for the work; the preparations for the field season having taken up a good deal of time during the recess owing to the large number of 4 -inch forest sheets which have had to be reduced and inked up, etc.

Nore-A new method of obtaining bluc prints for fair mapping has been tried and found succesful. 1 sheet was projected on drawing paper on the 1 -inch scale. The plane-table sections were traced and, the correct graticule having first been traced from the projected sheet, the necessary adjustmenta were made to eliuninate distortion. The traces were then mounted on the projected shect, the whole was enlarged by photography to the $l_{\hat{\lambda}}^{1}$-inch acale and two blue prints were obtained for fair mapping, ono for outline and one for liills. Neparate traces are ubually made of each 5 minute square but if convenient they can be made of larger arcas. This new method has advantagee over tho method hitherto employed which is somewhat similar except that tho traces are made from \mathbf{l}_{f}-inch enlargements of the plane-table sections, the traces are mounted on a $1 \frac{1}{2}$-inch projected sheet and the blue printa are obtained by vandyking. The advantages of the now mel hol are that the amount of photography is reduced, the vandyking is done away with, the reaulting blue printe being obtainal by photography are superior to those obtained by vandyking, the traces can be commenced sooner and the tracing is rasier and quicker as there is less arca to trace and the plane-table sections being in colour are much rlearer than the 1 -inch enlargements. An additional advantage is that the plane-table sections have not to be photographed, and can consequently be oompletely coloured up in the field. A dieadvantage is that the traces lave to bo more carefully and finely drawn than those on the 1 - inch scale, and probably the work could not brsatisfactorily done by inferior draftamen, for this reason it may not almays be possible to employ the new methol for every sheet.

If a plane-table section be suitable for enlargement for the direct mapping process in every respect except that it is not a complete sheet it is probable that, by making traces of the incomplete portion of the shect. monating the traces on the plane-table section and then enlarging the plane-table aection by photography to this 11 -inoh scale, good blue prints of the whole shect conld be obtained for fair mapping. In this rase, of course, the plane-table section should not be completely coloured up in tho field. The trases should only be lightly monnted at their corners anil could be subsequently removed from the plane-table scotiod.

No. 8 PARTY (MADRAS).
By Captain C. M, Bhowne, D.S.O., R.E.

Pbrsunnel.
Inperial Officers.
Captain C. M. Browne, D.S.O., R.E., in charge. Captain R. Foster, I. A.

Provincial Officers.
Mr. IR. Waller-Senior to 28th January 1912.
Mr. W. F. E. Adams.
Mr. E. I. Biggie to 4th June 1912.
Mr. S. F. Norman.
Mr. J. H. Williams from 8th Junc 1912.
Mr. M. Mahaileva Mudaliur.
Mr. Baliji Dhondiba.
Mr: M. S. Ganesa Aignr.
Upper Subordinate Sereice. Mr. Anantarao Dhondiba, R.S.

Lower Subordinate Servicr.
3 L Surveyors.
1 Soldier surveyor.
1 Draftsman.
1 Ttaverser.
7 Pupil surveyors.
9 Clerks.
I Sub-assistant surgeon.

The work carried out by the party was of the same nature and in continuation of the previous year and covered parto of the Malabar and Coimbatore districts of Madras and the Travancore and Cochin States in Madras. The work comprised surveys on the 1 -inch, $1 \frac{1}{2}$-inch and 2 -inch scales and traversing along the coast for the $1 \frac{1}{2}$-inch scale.

The Pambiyār catchment arsa forms part of the Pandalam Hills and except where explored by the Public Works Department of Madras, it was practisally unknown and absolutely uninhabited. The area is covered with ever-green forest with dense undergrowth, there are little or no means of communication and transport and labour are extremely hard to obtain as no men from the low country will go into this area, few hill-men were obtained, and all supplies had to be imported. The surveyors and their squads suffered from malarial lever during the time they remained in this locality. Of the rest of the country in the main part of the programme, the plains' portion near the coast consisted of flat country intersectel by numerous streams and backwaters, it is covered with dense croonnut plantation; or is under paddy cultivation and it is stadded with innumerable scattered hibitations, and the lilly portion consisted of forest which becomes dens re as the elevation increases with the exception that some of the hill tops are grassy but, as in maray cases the grass is very thick and high, from a surveror's point of riew, it is equivalent to dense jungle.

The party left Bıngalore on the 13th November 1911 arriving at Alwaye and Ernākulam on the evening of the next day. The experiment of taking a special train was a great success, not only w is there a direct saving of money to Government but, as it arrived with ali its equipment, ctc., the pariy could take the firld without any delay. No advance party was needed and drawing went on with the full strength of the party up to witinin two days of leaving for the field. The head-quarters of the party was located at Pirmed (Peermade) in 1he Travancore State until the 14 th May 1912 when it returned to Bangalore. Field work closed with ono exception in the last weck of May and the recess s"ason was opened in June.

The health of the party was on the whole good, considering the country in which it was working, until towards the end of the season when most of the members of the party suffered in one way or another. Two khaläsis died.

Topography. -The work was distributed aming camps as follows :-
Camp No. 1 was under Mr. Waller-Senior until the 28th January 1912 and from then until the cnd of the season under Mr. Biggie. The camp was employed on the survey of sheets $58 \frac{\mathrm{~B}}{12,18}$ in the Cochin and Travancore States and in a smill portion of the Coimbatore district. The whole area was surveyed on the 1 -inch scale except the 8.5 square miles of the Anaimalai reserved
forest whish iormed the small portion of the Coimbatore district above mentioned and which was surveyed on the 2 -inch scale as the old 4 -inch forest map. was acknowledged to be inaccurate.

Camp No. 2 was under Mr. Adams and undertook the survey on the $1 \frac{1}{2}$ inch scale of sheets 58 , C in the Malabar district and in the Cochin and Travancore States.

Camp No. 3 was under the charge of Mr. Balaji Dhondiba and completed the survey on the 1 -inch scale of sheets $58 \underset{0.13}{\mathrm{c}}$ in the Travancore State and of the portion remaining unfinished from last year in sheet $58 \frac{-\mathrm{B}}{11}$ in the Cochin State.

Camp No. 4 was under the charge of Mr. Anantarao Dhondiba, it completed the survey on the 2 -inch scale of the Pambiyàr catchment area which falls entirely in the Travancore State and then worked on the 1 -inch scale in sheet $58 \frac{\mathrm{c}}{14}$ in the Travancore State.

There is a comparative absence of village sites in the Malabar district and in the Cochin and 'lravancore States in spite of the density of their population which live for the most part in scattered huts. As it is impossible to show all these huts on the $\frac{1}{4}$-inch scale owing to their numbers, the more important and prominent ones are now distinguished at the time of survey with a view to showing them, if possible, on the degree sheets, this was not done previously to 1910-11 and in consequence, at the close of the field work this season, the whole of the 1 -inch sheets in degree sheets 49 M and 49 N were gone over on the ground and the huts, for showing on the $\frac{1}{4}$-inch scale, were marked on the 1-inch sheets which were issued to the surveyors for that purpose; the diffculty was not thought of until after the sheets had been surveyed and any selection, except on the ground, would possibly have resulted in the omission of large masonry houses, etc., whilst merely grass buts might have been shown.

Sheets $58 \frac{\pi}{12,16}$ and $58 \frac{\mathrm{C}}{1,5,8,13}$ were entirely surveyed, the survey of sheet $58 \frac{\mathrm{H}}{\mathrm{in}}$ was completed and sheets $58 \frac{\mathrm{C}}{14}$ and $58 \frac{n}{\mathrm{~J}}$ were partially surveyed; the portion completed in $58 \frac{9}{3}$ comprised the survey of the Pambiyàr catchment area which completes the material for the special combined map on the 2 -inch scale of the Periyār and Pambiyār catchment areas. 1,202 square miles were surveyed on the 1 -inch scale, $2 s 2$ square miles on the $1 \frac{1}{2}$-inch scale and 66 square miles on the 2 -inch scale. The total area surveyed was 1,550 square miles and is greater than that of last year by 263 square miles. The extraordinary difficulty of the country from a surveying point of view made it impossible for any of the surveyors to turn out anything but a small portion of their usual work.

Triangulation.-No new triangulation was undertaken there being more than sufficient for the next two years.

Trerersing.-Traverses, with branch traverses, were run along the coast from Cochin to Alleppey and thence to Quilon to give points to plane-tablers in sheets $58 \underset{!, 5,0, \overline{7}}{5}$, a total of 18 y linear miles. Along the coast in these sheets the country is that and low lying, covered with palm groves and intersected by streams. the triangulation could not approach near enough to pick up a suffcient number of points for the plane-tablers and hence the necessity of traversing.

Recess duties.-In fair mapping good progress was made, and, at the close of the recess, there will be no arrears except about $1:$ square miles in sheet
$58 \frac{1}{12}$, where the discovery of a serious inaccuracy makes it impossible to complete the fair drawing of the sheet until the matter has been settled on the ground. The programme carried out was sheets $58 \underset{8,11,18}{n}$ and $58 \frac{\mathrm{c}}{1,6,0,13}$, and sheet $58 \frac{12}{12}$ as above mentioned, completed except for a small portion. Sheet $58 \frac{c}{1}$ was drawn as an outrigger to sheet $58 \frac{c}{5}$. The whole area comes to 1,447 square miles. In addition to the above the Ootacamund Hunt Map on the 3 -inch scale is in hand and will, it is hoped, be completed by the end of the recess.

Triangulation charts $49 \mathrm{M}, 49 \mathrm{~N}, 58 \mathrm{~A}$ and 58 B were completed this year and 58 C is almost complete, these are all arrears of long standing.

Nots.-Last year, as reported, the use of mill boards did not prove very nuccessfal and this year the experiment was tried of pasting a shect of rag-litho paper over the boards, which was a success, the morsorements gave very little difference and the advantage of being able to take off: the section and roll it up, if desired, is great. In the coming field season most of the boards will be mountel in this way.

EASTERN CIRCLE.

(Tide Index Maps 3 and 6.)
This circle remained under the superintendence of Brevet-Colonel G. B. Hodgson throughout the jear and was strengthened by the addition of No. 9 Party which was transferrod from the Northern Circle. Last year the Circle Offioe and Nos. 9 and 12 Parties were accommodated in the offices of the: Assam Secretariat at Shillong which had become available owing to the offices of the local Government having been removed to Dacca. On the 1st April 1912, however, Assam having again been formed into a separate province, the buildings at Shillong were again required by the local Government and four private houses wero rented for the Survey offices at a cost of Rs. 445 per mensem.

No. 9 PARTY (BIHAR AND ORISSA).
By Col. G. B. Hodgson, I.A.
No. 9 Party commenced work in the Singlibhum district and Orissa Feudatory States triangulating an area of 7,559 square miles in sheets 73 F and B and 72 L and surveying in detail on the 1 -inch and 2 -inch scales 2,506 square miles.

Pbesonsel.

Imperial Officers.

Maj"r G. A. Beazeleg, R.E., in chargo up to 12th Augast 1912.
Captain R. H. Phillimore, R.E., in oharge from 13th Auguet 1912.

Provincial Officers.

Mr. Dhani Ram.
Mr. B. C. Newland.
Mr. F. Byrne.
Mr. A. K. Mitra.
Mr. W. P. Halen
Mr. D. N. Banarji.
Upper Subordinate Service.
Mr. Dalbir Rni. •
Mr. M. R. Maznmdar.
Mr. R. D. Thaplgal.
Lou'er Subordinate Service.
98 Surverors.
1 Traverser.
4 Computers.
5 Sndier survegors a oder training.

The field season commenced on the 15th October 1911 when the first section of the party left recess quarters at Shillong and field work continued until the 13th June 1912 owing to the backward state of the work, though some members of the party returned to Shillong about the middle of May.

Topography. - The greater part of the detail survey consisted of a supplementary survey of the maps compiled from the 16 -inch cadastral survey which was carried out partly in seasons 1895 to 1897 and 1902 to 1904.

The following 8 sheets were completely
 out of the total of 2,596 surveyed in detail.

Major Beazcley says it was impossible to separate the cost of the 3 classes of 1 -inch survey as so many changes took place amongst the surveyors owing to sickness and other causes and a cost-rate is not of any value owing to its being the first seison in country of a totally different nature to what the surveyors had been hitherto accustomed. The outturn of detail survey and costrates are given in the tables on pages 36 and 38 . The rerision survey was a revision of 4 -inch fore t mape.

Triangulation. - The outturn of triangulation has been very large as it was h ped that with the assistance of the excellent maps of the cadastral surver, the outturn of the party would be at least a whole degree sheet and that in future $\mathbf{2}$ degree shects would be survered each season. This expectation
does not appear at all likely to be realised, the cutturn this season being particularly smail. This, however, may be ascribed to its being the first season in a now province and to the very different nature of the country to what the surveyors had been accustomed to in the Punjab, where it is open and dry. Here the country is heavily wooded excepting in the cultivated valleys and a good deal of rain was experienced during the field season.

It has now been decided that the Native States are to be surveyed on the $\frac{1}{2}$-inch scale, and a considerable improvernent in the outturn is expected next season when sheet 73 F will be completed and probably the eastern half of sheet 73B.

The cost-rate of the triangulation is low as the whole area had been triangulated before, and it was only necessary to re-observe at the old stations to fix fresh stations and points, only 2 zeros being used; also out of the 4 observers, 2 were surveyors.

Traversing.-The traversing was all forest boundary traversing. The costrate is very high, partly, owing to its being supervised for part of the field season by Lientonant Huddleston who also had charge of the computations during recess and partly, to there being no trained traversers in the party. Surveyors had to be taught the work and much of it had to be re-done.

Recess duties.-The sheets surveyed, (viz. :-73 $\frac{\mathrm{F}}{\left.\frac{9}{9,0,10,11,13,14,15,18}\right)}$), were all fair mapped and forwarded to the Circle office before the party took the field again.

The cost-rate of the mapping is high as 4 officers of the Provincial Service and 3 of the Upper Subordinate Service were employed on drawing.

Notes on the mounting of Bristol boards amd of drating papor on plane-tables for the field.

By Caftain R. H. Philimore, R.E.

(1) The distortion of field sections is a great hindrance to rapid fair mapping, and laborious processes bave to be introduced for its elimination.
(2) When a field section remains true to projection, the north and south lines having expunded or contracted equally with the enst and west lines, then it can be so enlarged or reduced by photography that its graticale exactly fite the truly projected fair sheets. Detail may thon either be printed direct on to the fair sheet or transferred atraight from the photographio prints to the tair sheet.
(3) When, however, the plane-table section has expanded or contracted more in one direction than in the other, the photographic enlargements or reductions will remain distorted; and cannot be direotly tranaferred to the fair shept.

The processes of transferring all detail by specially prepared traces during which the distortion is elimimnted, occupy from five to air weeks for each fair inap. Special traces have to be propared for the hill sheet an well as for the outline sheet.

It is to save this expenditure of labour in fair mapping that endeavours are being made to mount the field section on the plane-table so that it shall not distort.
(4) Any paper or thin board which is pasted firmly down on a wooden plane-table over its whole area will expand and contract with the plane-table. The wooden plane-table expands and contracts more across the grain than it does with the grain ; heace the distortion of any graticule drawn on the mounted paper.

The writer bas tried mounting Bristol boards by pasting them firmly down on the plane-table, and the graticules were found to distort just as much as with drawing paper.
(5) To mount either drawing paper on Bristol boards by pasting them firmly down along the edges and leaving them free otherwise, resulis at once in "cockling," for paper does not naturally expand or contract equally with the wooden plane-table. The paper is more absorbent than the plane-table, and it is also more readily affeoted by the direct rays of the sun.
(6) During senson 1911-12, Major Beazeley, R.E., in No. 9 Party used a specinl paper mounted on stiff canvas. This paper was pasted on the plane-tables round the edges only, and it was hoped that would not cockle so much as ordinary drawing paper, being less absorbent.

It did cockle a good deal though ; the paper was of poor quality, and would not stand eraare and the resalting field sictions were all very dirty and many almost illegible.

Bat there was no distortion of graticule at all; the photographic enlargements exactly fitted the true projections on the fair sheets. Sufficient blue prints of the enlargements were obtained for :-
(1) Direct tranafer of notline detail to outline sheet.
(2) Entering up names for typing.
(3) Direct transfer of hill detail to hill fair sheet.

No special ndjasted traces had to be prepared.
(7) In order to get the advantages of this direct maping and transferring, and to avoid the very objectionalile cockling, the fitld sections of No. ! Party have been monnted this seanon by parting one edge of the paper or Bristol board firmly to the plane-table and leaving the other three edges lightly held down by cloth but free to expand or contract.
(8) No. 9 Party is carrying out supplementary survey over an area that has been recently surveyed cadastrally. The 1 -inch reductions of cadastral maps are supplied printed in grey on 210 lbs drawing paper mounted on cloth. Bristol boardsare being used for some field sections,

Both Bristol boards and the cloth mounted drawing paper are being monnted in the following way :-
The field section is fastened firmly along one long edge of the plane-table by a strip of cloth pasted firmly round the edge of the board.
The other three sides of the field section are cut so as to leave a half-inch margin of plane-table round them.
Strips of clotb are then pasted along theae three edgen, along the upper sarface of the field section and nlong the underside of the plane-table only. The cloth must not adhere to the plane-table at ail along the half-ingh interval betwern the edge of the field section and the edge of the plane-table. The cloth is atretched tight when mounting and the field section must not be wetterl.
If the atmosphere now begins to get dry, the wooden plane-table shrinks across the grain more than the field section dnes and the cloth round the three free edges becomes slack.
There is $n o$ cockling in the paper or the Bristol board as they are both stilfer than the cloth which binde the edges.
(9) In actual $ן$ ractice some of the field sections were allowed to get stuck here and there along the three edges which ware supposed to be free, and cockling has followed. The edges have since bean released, and the drawing paper settled flat at once, but it is impossibla to get all the cockle out of the Briatol boarde. Whore the edges had been left properly free to start with, the Bristol boards have not cockled at all.
(10) As the plane-table contracts during the dry weather, the field sections may get inconveniently loose along the free edges. Surveyors have been supplied with adhesive paper, such as is used in repairing music, etc., strife of which can be fastened at intervals round the edges.
(11) Brintol bosids or cloth moanted drawing paper are more suitable than plain drawing paper, as they are heavier and atifier and lic more closely to the plane-table.

The writer has worked on a board sn mounted and experienced no inconvenience from the slight play letween paper and board.

This method cannot, of course, be pronounced successful till the close of field eason, but so far it has worked as expected, except for the accidental dropping of paste along edges which were not supposed to be pasted. The officer superintending had not fully realised the importonce of this point.

Br Col. G. B. Hodgson, I.A.
The party continued work in the Kathā, Bhamo and Myitkyinā districts

Pebsonnel.
Imperial Officers.
Brevet-Major E. T. Rich, R.E., in charge. Lieutenant W. E. Perr'y, R. E.

Provincial Offeers.

Mr. O. D. Smart.
Mr. P. Williams.
Mr. W. G. Jarlo.
Mr. V. W. Morton.
Mr. Asmatullah Khan, K.S.
Mr. W. H. Strong.
Mr. C. B. Scuton.
Mr. Hayat Muhnmmad, K.S.
Mr. B. C. H. Collins.

Loncer Subordinate Service.

17 Survey.rs.
2 l'raversers.
3 Computers.
of Upper Burma. The country under detail survey was mountainous, the valleys being deep and densely wooded, and consequently the survey had to be done almost entirely by plane-table traversing. The altitudo varied from 300 feet on the Irrawaddy river to over 7,000 feet in the highest hills.

The recess office closed on 11th Novemher 1911 and re-opened on the 27th May 1912 giving a field season of just five months.

The programme of both triangulation and detail survey was not completed as Lieutenant Perry and 4 of the best Surveyors of the party were attached to the North Burma and Laukhaung missions and one Surveror remained sick throughout the field season. An outbreak of cholera amongst the khaläsis while they were going up the Irrawaddy river by steamer to join the party for the field season, also contributed to the non-completion of the programme, as the khalūsis were detained in a segregation camp for over a fortnight during which work was practically at a stand-still, although the surveyors procesded to their various destinations and started work with the aid of men supplied from the villages.

One of the triangulators was also delayed by the failure of his mule transport, (which comes from Cbina), to arrive at the proper time owing to the political unrest in China.

Two Surveyors and one officer of the Upper Subordinate Service were attached to political missions in North Burma.

The section of this party hitherto occupied in training officers of the Burma Land Records Department was transferred to the Burma Government, from the 1st April 1912.

Topography.-The party carried out the detail survey on the 1 -inch and 2 -inch scales of 2,689 square miles ; 71 miles of trans-frontier sketch survey were also carried out.

The following 12 sheets were completely surveyed:-Nos. $92_{\overline{7,8,11, ~} \overline{i 2}, \overline{45}, 16,10}$, $92 \frac{\mathrm{H}}{-j_{i}^{5, \% 13}}$, up to the China boundary and $93{ }_{1}^{\mathrm{E}}$.

The revision survey consisted of the revision of the maps of forests that had been previously survered on the 4 -inch scale. The hills had to be contoured as they had not been contoured in the old maps.

Details of the forests surveged will be found in the General Report Volume for 1911-12.

The cost-rate of the 2 -inch forest survey this season is much lower than it was last year when it was very high owing to the lack of demarcation, some of the reserves surveyed then not having been demarcated as they had only just been reserved.

Triangulation and Traversing.-2,336 square miles were triangulated and 500 square miles were traversed, making a total of 4,500 square miles prepared in advance.

The combined cost-rate per square mile for triangulation and traversing for 1 -inch detail surver is Rs. 104 , the cost of the traversing alone being Rs. $26 \cdot 4$ per square mile.

Recess duties.-The whole of the mapping was finished and forwarded to head-quarters before the party took the field again.

The cost of mapping is very high, but Major Rich is unable to give any special reason for it.

No. 11 Party (LOWER BURMA).

By Col, G. B. Hodeson, I.A.
The party continued work in Karenni and the Salween district of Lower Burma.

The country surveyed in detail consisted of part of the watershed of

Pbrsonnel.

Imperial Officers.
Major E. A. Tandy, R.E., in oharge to 4th May 1913.
Captain L. (7. Crosthwnit, I.A., in charge from 6th Mey 1912.

Pronincial Officers.
Mr. C. Litchfield.
Mr. T. P. Dewar.
Mr. A. A. Graham.
Mr. H. St. J. Kenny.
Mr. A. I. Booth.
Mr. R. M. Wyalt.
Tpper Sicbordinate Service,
Mr. Lachman Vaji Jadu, R.B.
Lover Subordinate Service.

21 Surveyors.

3 Pupila.
1 Soldier sarveyor ander training. the Salween river and its tributary the Nam Pawn, and was not difficult to survey. Inspecting officers, however, found some difficulty in getting about, as the tracks were almost impossible for mule transport with which the party was equipped. The hills were steep and rocky but only lightly wooded.
'The field season, as usual in this party, was a sloort one owing to the distance of the field of operations from the railway. The party left recess quarters towards the end of November and returned thereto early in May with the exception of 2 Surveyors who remained in the field till the 20th June to complete the programme of 2 -inch forest survey which had been delayed owing to the illness of one of the Surveyors. Three Surveyors were attached to the North Burma mission and one to the Abor expedition ; one was dismissed at the commencement of the season and one died at the end of the field season, during almost the whole of which he was unable to work.

Topography.-The programme of 1 -inch and 2 -inch surveys was completed but that of the $\frac{1}{4}$-inch survey was not. This was partly due to one of the Surveyors having fablen sick and laving to return to recess quarters before the end of the field season and Mr. Lachman Jadu, under whose supervision it was being carried out, and who was also engaged on detail survey himself, had to complete the 2 -inch forest survey in sheet 94 G owing to the illness of another Survesor.

The outturn was 2,010 square miles of 1 -inch and 2 -inch detail survey in sheet 94 E and 1,628 square miles of $\frac{1}{4}$-inch surver in sheet 94 G .

The cost-rate of the 1 -inch survey is considerably higher than that of last season owing to the area surveyed being much smaller.

Triang"lation. -The party carried nut 3,950 square miles of triangulation for l-inch surrey in the Tavoy and Amherst districts and 530 square miles for $\frac{1}{4}$-inch survey in the Salween district.

The cost-rate of the triangulation (in contradistinction to that of the detail purvey mentioned above), is much lower owing to the large area triangulated this season, although the country was difficult, being densely wooded. A series of G. T. Survey triangulation passes over the area triangulated.

Recess duties.-The following 7 sheets were entirely surveyed and mapped :$94 \frac{\mathrm{E}}{1,5.4,5,0,7,6}$. The mapping of the $\frac{1}{4}$-inch work in 94 G was only completer in outline as the sheet will have to be completed to graticule limits from old surveys and this will be done in the circle drawing office.

> No. 12 Party (ASS.AM).
> By Col. G. B. Hodaoon, I.A.

No. 12 Party continued to work in Assam and triangulated and traversed 3,256 square miles and surveyed in detail on the 1 -inch and 2 -inch scales, 3,359 square miles in the Khāsi and Jaintia Hills and Kāmrūp districts.

Lieutenant Oakes was attached to the Abor expedition throughout the

Pbisonnel.
Imperial Officers.
Captnin R. H. Phillimore, R.E., in charge to 12th August 191\%.
Liputennnt G. F. T. Oakee, R.E., in charge from 13th August 1912.

Provincial Offerers.
Mr. W. Skilling.
Mr. Pramadaranjon Ray.
Mr. E. M. Kenny.
Mr. Amjal Ali.
Mr. I. Williams.
Mr. P. C. Mitra.
Mr. H. H. Creed.
Upper Subordinate Scrvice.
Mr. Nanak Chand Puri.
Lower Sulordinate Service.
2; Surveyors.
a' 'raversers.
3 Computers.
3 Soldier nurveyors.
1 Pupil survegor under training. field season, and 3 surveyors were attached to various political missions for part of the field season and one was on sick leave the whole season, consequently neither the programme of triangulation nor that of detail survey was completed, though the outturn of detail survey only fell short of the programme by one sheet.

In his interesting report Captain Phillimore says :-
" During season 1910-11 the party had been surveying the open plateau of the Khāsi hills with its declivities and abrupt descent in the Surma valley southwards. This season only 2 sheets lay in the open ground on the plateau; some 3 or 4 sheets were occupied with the wonded spurs which wind northwards to the Brahmapūtra valley and the remainder of the work lay in the swampy plain of the Brahmapūtra, mostly in the Kāmrūp district. The northward falling spurs of the Khāsi hills are heavily wooded, mainly with $s \bar{l} l$ forest, much of which is rescrved by the Forest Department. Undergrowth is very heavy but the hills sides are steep and fixings could always be obtained with a certain amount of clearing. In the neighbourhood of villages there were considerable patches of ground alrcady cleared. Chains were taken from the Surveyors who had hitherto always worked entirely with chains so their progress was slow, but they should be really uscful in the hills another season. Roads and villages were not frequent, the few inhabitants being Gāros and Mikirs who were more frieudly than either Khāsis or Assamese and were ready to supply what they could in the way of labour and provisions."

Describing the Brahmapūtra valley in which the party will mainly be working for the next 5 years, Captain Phillimore says:-
"For several miles to the south of the river, the ground lies very low and is mostly under water during the rains. When the surveyors took the field in November, they bad to confine work to the neighbourhood of the Gauhati-Goälpära trunk road which hugs the foot of the hills, paddy mas still being cut and the fields were not passable till late in December. Work was then extended over the populated areas where the country was fairly open and paths available. It was not till the end of February that the surveyors were able to make much headway in the swampy ground towards the river ; this was covered with dense khagra grass growing to 20 feet in height. Men
were very nerrous at first about entering this ground, fearing tigers, elephants and buffalo: however, no incidents of note occurred. As the season advanced, the swamps dried, the tall grass was burnt and villagers came in to clear the fields.'"
"There was very little detail to be surveyed in this area. Streams were found to have altered but little since the time of the old Revenue Survey. The plane-tablers ran chain lines here and there through the grass, advancing perhaps a mile in a day, with four or five men to cut a passage. Sometimes they met with a slight depression holding water, sometimes a stream shown on the old map. This was followed up for a short distance and if the old survey was found right at points 2 miles apart the interval between was accepted. The Brahmapūtra river itself was not difficult to survey. It here spreads out to a width of 5 miles or more, in constantly shifting channels; the river banks, islands and channels had completely changed since the cadastral maps had been prepared, so this ground should rightly have been classed as original survey. The rise and fall of the river is from 30 to 35 feet; flood level at Gauhati being about 160 feet above the sea. Country boats were not obtained at all points as there is so much waste-land along the banks. and the surveyors had to hire boats for a few days at a time and were often held up for lack of them."
"Here and there along the river, small rocky lills formed useful points. for the plane-tablers, who were able to carry on with interpolated fixings from these and other points fixed by triangulation south of the river. North of the river, work was carried on entirely from traverse points. Across the river there are several densely populated districts in north Kāmrūp clustered round important centres such as Hajo, Nalbari, Barpeta. 'The villages are surrounded by lamboo clumps and gardens, the intervening ground is continuously cultivated, distant views were impossible and work was carried out entirely by claining. In other parts there are extensive wastes of swampy land. 'ro the east of Barpeta there is a stretch of 100 miles of such ground and it is interesting to note that in the old Revenue Survey maps this is shown as thickly populated so something serious must have affected the drainage and this is generally said to have been the great earthquake of 1597."
"As the ground rises sradually towards the Bhutan liills, marshy land is less extensive and forests begin to appear ; the wide stretches of grass land are full of game till the grass dies down or is burnt. The rivers that break out from the Bhutān hills are continuaily changing their courses across the valley where they flow in shallow channels and spread out into sinall streams. During the rains new channels form and bring down floods to wash away viliages and fields. The Pagladiya is the most unruly of these rivers and efforts are still made to train it into a straight course to the Brahmapūtra. The shifting of rivers causes the shifting of villages and the maps of Kāmrūp district will always require more frequent revision than others. There are only a few roads along which carts can be taken all the year round but during the dry months, January, February and Maroh carts can be used more freely. They can only l,e ohtained at the big villages however and oue or two days' notice has always to be given. Coolies are obtainable with the greatest difficulty and never in greater numbers than half a dozen at a time. Elephants are the only form of transport that can be taken at any time up to the foot of the Bhutan hills or into the swampy ground near the river, and all officers in the party were much hampered by lack of elephant transport."
"South of the Brahmapūtra in the Nowgong district, the country is very swampy and communications are most meagre. The hills along the south margin sheet of 83 B are fairly thickly wooded and villages are scarce and elephant transport is most necessary in this area."
"Considerable difficulty was experienced throughout the valley in obtaining supplies and labour. Mauzadars and head-men were on the whole quite polite but had little authority over the villagers who strongly resented being called out either for jungle clearing or carrying loads. There are many dispensaries with subordinate medical officers at different centres in the Kämrūp district and the surveyors made considerable use of them."
"The men working in the Khāsi hills left Shillong on the 3rd November 1911, and were all at work by the 10th. The remainder of the party assembled at Gauhati, the field head-quarters, on the 13th November and the last surveyor started work in the plains by the 25 th of that month. It is impossible to start field work earlier in the Brahmaputra valley as the greater part is under water till then. 'I'he survey in the Khāsi plateau was finished during March when the surveyors were moved down into the low country. No rain fell in the valley till quise the end of March and the atmosphere became very thick with smoke haze; plane-tablers lost many days through not being able to see points 3 miles distant. When rain came at last, it was very persistent and over 10 inches fell during April (nearly double the normal fall), and several surveyors fell sick. The reduced programme was completed by the end of April and office re-opened at Shillong on the 6th May."
" There were 3,660 working days out of a total of 5,130 days. The 1,470 non-working days were not spread evenly through the season ; they include the periods of marching to and from the field and lengthy periods of sickness of a few individuals."

Topography.-The following sheets were completely surveyed :—Nos. 78 $\underset{1,2,3,4,5,6,7,0, i=1}{N}$ and $78 \underset{1,2,5,6,0}{0}$ and the fair mapping was completed before the end of the year.

Regarding the nature of the season's work Captain Phillimore says: "The work may be classified as follows :-
(a) Original survey on the 2 -inch scale. North Kāmrūp Forest reserve.
(b) Original survey on the l-inch scale. Mostly in the Khāsi Hills; a large area of flat ground in the valley was also included under this bead, being uninhabited land surveyed prior to 1875 on the 4 -inch scale by the old Revenue Survey.
(c) Supplementary survey on the 1 -inch scale in the Kamrup district of ground surveyed cadastrally on the 16 -inch scale between 1883 and 1897.
(d) Revision survey on the 1 -inch scale of rescrved forests already surveyed on the 4 -inch scale."
"The work of the 4 -inch Revenue Survey and of the 16 -inch Cadastral Survey had been published in 1 -inch maps: prints of these were obtained on bank-post paper and such detail as was useful was transferred to the planetable sections by 5 minute squares. Main roads and village trijunctions proved the most useful items of the old surveys. Fere and there streams were found following their old courses and in such places the old surveys were found very accurate, but over the greater part of the Brahmaputtra valley, streams and other water forms have entirely changed during the last 1.5 years or so."
"The older Revenue work which had been classed for original survey was found quite as useful as the later cadastral surveys."

There is notling to remark about the cost-rates except that that of the 2 -inch forest survey is a good deal lower than last year's which is due to easier ground. There was not much detail and forest was only very dense along the streams. 'The rates for 1 -inch original and supplementary survey differ from last year's, the total for the tro classes being exactly the same, so that the difference is probably due to differences of classification.

Triangulation.-"The triangulation computations worked out quite satisfactorily, though very discrepant angles were obtained at one station. This was a bench-mark on the trunk road and the discrepancies appear to have been due to excessive refraction. As the work ran along a G.T. S. series and was connected with 7 of its stations, a fairly high standard of accuracy was maintained. One side common to Lieutenant Oakes' work of season 1909-10 was computed and one common to Mr. Williams' work of last season. In the former case the difference in length was 1 foot and in the latter 2 feet, while the differences in height at the former 2 stations were -8.0 feet and -7.4 feet respectively. The differences in latitude at the former 2 stations were $0^{\prime \prime} \cdot 10$ and $0^{\prime \prime} \cdot 12$ and in longitude $0^{\prime \prime} \cdot 09$ and $0^{\prime \prime} \cdot 04$, while at the latter they were $0^{\prime \prime} \cdot 02$ and $0^{\prime \prime} .01$ and $0^{\prime \prime} .03$ and $0^{\prime \prime} .00$ respectively. As Mr. Williams' work was based on the G. T. S. series, as was Mr. Mitra's, small differences were to be expected, but Lieutenant Oakes' work was based on the revisionary triangulation in the Khăsi Hills carried out by Mr. Bond after the earthquake of 1897 and appreciable discrepancies were expected. Last season's work indicated that Mr. Bond's revisionary heights were from 5 to 7 feet too high (vide page 19 of last year's Records), and this is indicated again this year by Mr. Mitra's two heights being 7 and 8 feet lower than Lieutenant Oakes'."

Recess duties.-All the sheets surveyed were fair mapped with the exception of sheet $78 \frac{\mathrm{~N}}{5}$ which requires some revision, which will be done early next field season. Five draftsmen of the circle drawing office were lent to the party during recess to assist in the mapping. Special attention was paid during recess to training promising Surveyors in drawing, but the results were somewhat disappointing.

THE LEBONG CANTONMENT SURVEY.

Br Liedtriant J. A. Fifid, R.E.
The point of origin of the cantonment survey of Lebong and the municipal survey of Darjeeling is Observatory Hill G. T. H. S., height 7.162 feet. The scale of survey is 20 inches $=1$ mile.

The Lebong survey starts from one of the main traverses of the Darjeeling municipal survey and its operations are contained in two complete circuits and a portion of a third one which is common to both the municipal and cantonment surveys.

These main traverses are run along the roads which surround the cantonment, and are closed up, and the errors adjusted in the usual way.

The angular crror was found to be very small, but a greater margin of linear crror had to be allowed, owing to the difficulty of chaining accurately down steep slopes. In some cases errors of 1 link in $2 \frac{1}{2}$ chains had to be passed, while in the plains no crrors greater than 1 link in 10 chains are permssible.

The experiment was tried of remeasuring one of the lines several times, but each measurement gave a different result, showing that the differences were due entirely to the difficulty of the work and not to faulty chaining. In such surveys no hard and fast rule can be laid down as to the margin of error permissible-every case has to be judged separately on its merits.

In this bill survey, 100 feet tapes are used to a great extent instead of chains. In "cutting" when measuring down a hill, a tape does not sag like a heavy chain does ; and it is also convenient sometimes when "cutting", to be able to take a measurement of less than 1 link. Another advantage which the tape possesses is, that when traversing over broken and difficult country, gaps or nullahs are often met with over 1 chain wide but less than $1 \frac{1}{2}$ chains. In such cases the distance can be measured with the 100 feet tape, whereas, if only the 66 feet chain were available the traverse would have to be taken round the obstacle, meaning extra stations and extra labour.

The tapes have to be continually tested against the traverser's standard chain. Each man ordinarily bas 3 chains ;-one of which is used for running the main traverse, another for taking offsets, while the third is kept in reserve as a standard.

All the chains were obtained from Hazāribagh, and tested before despatch between two marks laid down on the verandah of the Survey Office there.

Subtense methods are considerably used in running these traverses. They prove useful in measuring along main circuits over bad ground, where it is difficult to chain, and in some cases a subtense line of as short as 3 chains was measured.

Another way in which subtense work comes in very useful is for measuring across from one side of a circuit to the other ; this gives a very good check on the work, and localises any errors that there may be.

It is of interest to note that the method laid down by Colonel Tanner in his note on the subtense bar is not followed in its entirety. His procedure was to plumb the subtense bar on its stand exactly on the station 0 .

He first observed the angle A OS, and then the angle S OT to give the distance. 'To obtain the oircuit angle, the angle S O T was halved, and added to AOS, giving the angle AOB. The objection to this is that such a lot of time is spent plumbing the subtense bar accurately.

The method adopted in the Lebong survey is to first observe the horizontal angle $\triangle O B$, and then to put the subtense bar up and observe for the distance afterwards. 'Ihe subtense bar need not be placed exactly on the station -all that is necessary is to measure the distance of the bar from the station.

The advantage of this is that much time is therel,y saved.
Very often also it is not practicable to erect the subtense bar exactly over the station, owing to trees or houses or other obstructions.

This is the procedure now laid down in the new Topographical Hand Book, Chapter IV.

It is found that in steep country stations should be close together, so as to localise errors in cutting. In level country, of course, the distance between stations should be as great as possible.

The stations are marked by pegs, and the plane-tablers follow the traversers as soon as possible, so as to prevent the pegs being pulled up and lost.

After the main circuits had been completed, subtraverses were run in all directions along the roads, breaking up the main circuits into small areas for the plane-tabler to work on.

These subtraverses were all closed and adjusted on stations of the main circuits.

Owing to Observatory Hill G. T. H. S. being the only fixed point available for tying the circuits on to, it is possible that the whole survey may be slightly out in azimuth.
'This will be checked by triangulating from Observatory Hill H. S. and Birch Hill H. S. to the most N. E. portion of the Lebong circuit. If possible, an intermediate station will be fixed, so as to provide two triangles with a common side. The azimuthal error could also be checked by observing astronomical azimuths, and this will be done in the case of the Takdah survey as there are no G. 'T. stations convenient for triangulating from. The triangulation method is however quicker when practicable.

As the traversers proceed with their work, they send their field books in to the computers, who compute out the co-ordinates of the stations, and plot them in blue on the field sheets which are then handed over to the surveyors.

The detail is practically all put in by chaining, and the sight rule is only used for cutting in points inaccessible for chaining, inserting nullahs in precipitous ground, and so on. This portion of the work calls for little comment except to mention that each sheet is very rigorously partalled by the Officer in charge of the Survey.

The levelling of these cantonments being a task of some magnitude owing to the difficult nature of the ground, the Superintendent of the Trigonometrical Survey was asked to undertake the work, and he deputed Mr. Syed Zille Hasnain, Extra Assistant Superintendent, to carry out the levelling.

The method adopted was, (apart from the difference in the nature of the ground), precisely the same as that by which the levelling in connection with the recent Delhi Surveys was done. It may be mentioned that Mr_{r}. Hasnain was also in charge of this work.

The Lebong levelling started from Observatory Hill G. T. H. S., and by ordinary double levelling for $1 \frac{3}{4}$ miles, reached a point within the Lebong Cantonment. From this point a series of circuits and sub-circuits was started. These circuits were so arranged that the heights of the common points were checked by both levellers.

The levelling in the cantonment was only single, but it was run in closed circuits so as to localise any error that there might be; the error allowed along the main lines was 0.02 of a foot per mile.

It was originally intended to pick up as far as possible the traverse stations laid down by the traversers and use these as the level stations. It was found however that these traverse stations were too small, being generally wooden pegs $1 \frac{1}{2}$ inches in diameter and 6 inches in length; and it was also a matter of difficulty to tind them when buried on one side of the road.

The levellers therefore went on ahead, and did their work independently of the traversers, leaving their stations to be picked up later. They so arranged their circuits that cantonment boundary pillars, parapets of bridgos and culverts,
and plinths of important buildings were all picked up and their heights determined.

In addition, specially prepared large wooden pogs 3 inches square in section and 18 inches long were driven into the ground and used as intermediate stations at junctions of roads and other important places.

Roughly speaking, heights have been determined at intervals of about 8 chains all over the cantonment.

Each station is doubly numbered with the number of the section and its own number ; thus $\frac{2}{5}$ means the second station in section No. 5 ; and the position of each is plotted on an existing rough sketch map of the cantonment. Thus, when the traversers follow the levelling, they can easily identify and pick up these points. In addition to the above plot a full description of all the levelled points was prepared and supplied to the traversers.

Lebong was levelled, partly after the traversers had commenced work, and partly before.

In Takdah the whole levelling has been done in advance.
This work originated from a G. T. secondary station Takdah (Deoradanda), H. S., height 6,760 feet, and the same procedure was adopted.

As the contouring had only to be done at a vertical interval of 50 feet, the heights supplied for the surveyors were given to the nearest foot, although they were observed and their computation was carried on to the third place of decimals as usual.

Owing to the steepness of the ground the work progressed slowly. A leveller on an average did $\frac{1}{2}$ a linear mile per day, while in the plains he would have done some 3 miles. It is necessary to mention that this $\frac{1}{2}$ mile would mean a difference in height of some 300 feet and comprise 50 odd stations.

In some cases shots as short as 20 links had to be observed and in consequence special levels had to be selected that would focus at such a short distance.

Ordinary G. T. 10 feet staves were used.
The levelling completed, the surveyors take their P. T. sections and proceed to contour the sheets. In cases where the trayersers follow the levelling, the heights are all plotted on the board. Where however the traversers have gone first, the fixed heights are now inserted by chaining on the P. T. sections.

The contouring is done with 2 wooden poles 5 and 15 feet long with plumb bobs on each, and a small horizontal sight piece on the smaller pole. Both poles being plumbed, the long pole is moved about until the top is seen in line with the horizontal piece on the 5 feet pole. This gives a difference in height of 10 feet and this can be either chained to or inserted from detail if there is sufficient available.

From 5 of these differences in heights the 50 feet contour is inserted.
To check the work a few contours will actually be measured along the ground.

Tho criticism might be made that such an accurate system of levelling is a very expensive method of inserting a 50 fect contour, especially as the 10 feet contours has practically to be first obtained and then only every fifth one used.

It would have been little if any more expense to contour the cantonment at 10 feet intervals than at 50 feet. This was pointed out to the Military suthorities, but they decided that all they wanted was the 50 feet interval, and the survey is therefore being contoured at this interval.

TABLE 1 .
OUTTURNS OF DETALL SUKVEY.

Soulo.	Olane of anrvey.	Cirole.	Party.	Locality.	Claus of Country.	Oottoen.		Average namber of firing: por aquare mile.
						Total square miles.	Average per man per month in square miles.	
\$-jach . trinch.	Survey	E	No. 11	Lower Burma .	Jungle clad hills	1,028	\cdots	0.5
	Eurvey	N	No. 1	Sifehen glaoier and vioinity,	Hilly	886	\cdots	. ${ }^{\prime}$
1-inch .	Survey	N	No. 1	Kashmir . .	Hilly and mountain008.	4,489	$47 \cdot 7$	37
		N	No. 2	Punjab •	Open irrigated plains	1,716	$98.0(a)$	
		N	No. \&	United Provinces	$\begin{aligned} & \text { Flat cultivated } \\ & \text { plains. } \end{aligned}$	3,699	$\mathbf{3 6} \cdot 89$	$\left.18^{\circ}\right)(a)$
		S	No. 5	Central Provinces and Central India.	Varied, chiefly wooded hille.	2,569	$17 \cdot 2$	17
		S	No. 0	Berar and Hyderabed.	$\begin{aligned} & \text { Varied, open and } \\ & \text { broken hilla. } \end{aligned}$	1,958(b)	$19 \cdot 2$	25
		S	No. 7	$\underset{\substack{\text { Madras } \\ \text { Mysore. }}}{ } \quad \text { and }$	High hills, mostly forest olad.	562	$28 \cdot 3$	11
		S	No. 8	Madras .	Varied, intricate ${ }^{\text {a }}$	1,204	$13 \cdot 4$	2θ
		E	No. 10	Upper Burms	Densely wooded and mostly hilly.	2,194	30.0	14
		E	No. 11	Karenni and Southern Shan States.	Steep rocky hills, lightiy wooded.	1,800	38.3	6
		E	No. 12	Aspam .	Partly open and partly densely wooded.	1,566	20.5	8
1-inoh .	Revision Sarvey.	N	No. ${ }^{2}$	Punjab . .	Open irrigated plains	6,589	38.0(a)	. \cdot
		N	No. 3	$\begin{array}{\|cc\|} \hline \text { Ganges } & \text { valley, } \\ \text { United } & \text { Pro• } \\ \text { vinces. } & \\ \hline \end{array}$	Cultivated flat	6,187	34'9	$18 \cdot 9$
		B	No. 5	Central Provinces	Open cultivated plaine.	904	$75 \cdot 0$	3
		S	No. 7	Madras and Mysore.	High forest clad bills	425	$30 \cdot 4$	7
		E	No. 9	Bihñr and Oriasa	Hilly and mooded .	489	377	(c)
		E	No. 10	Opper Barma .	Densely wooded and mostly hilly.	280	45.0	11
		5	No. 11	Southern Shan Staten.	Steep. rocky hills, lightly wooded.	93	43.2	6
		E	No. 12	Assam .	Densely wooded hills	178	21.5	4
	Re-gurvey Supplementary Survey.		No. 9	Bihär and Orissa	Hilly and wooded .	210	17.3	(c)
$\begin{aligned} & \text { ?-inch . } \\ & \text { i-inoh } \end{aligned}$		N	No. 4	United Provinces	Flat cultivated plains	2,108	66.34	18(a)
		E	No. 9	Bihār and Orisan	Hilly and wooded .	1,893	$21 \cdot 9$	15
		E	No. 12	Abeam	Pla:as densely populated with large areas of marsh lande.	1,638	27.5	12
$1 \frac{1}{1}$ Inch.	Survey	S	No. 7	Madtan .	Low undulating, very intricate.	1,059	$13 \cdot 0$	26
		S	No. 8	Madiras	Flat, very intricate .	282	5.0	85
12-inch .'	Revision Sarrey.	N	No. 2	Pnajab, Siwälik hills.	Hilly . .	64	38.0 (a)	...
		S	No. 7	Madras .	Low undulating, very intricate.	118	29.8	11
S-iach .	Saptey	s	No. 6	Berār .	Broken hills, heavily wooded.	408	$8 \cdot 1$	58
		S	No. 7	Madras, Mybore and Coorg.	Heary jungle-clad hills.	182	$9 \cdot 3$	47
		8	No. 8	Madras ${ }^{\text {Bin }}$.	Hilly dense forents .	66	4.4	29
		$\underset{\mathbf{E}}{\mathbf{E}}$	No. 9 No. 10	Bihär and Oribas Opper Barma	Hilly and wooded Wooded and partly	4 215	11.9	57
		E		Upper Barma .	hilly.	215	113	57
		E	No. 11	Southern Shan States and Lower Barma.	Low jungle-clad hills	117	$11 \cdot 8$	23
		E	No. 12	Asabin .	Densely wooded plains.	77	12.5	26

(b) Worled ont from the totale for the whole perty and inglnding all descriptions of anryey.
(b) Inoludes 21 equare milea aleo murveyed on the 2 -inch scale.
(e) Not recorded eeperntely.
(d) No. 4 Party alpo carried ont approxinstely 175 sqnare miles of 16 inches to 1 mile gnryey of Quetta Civil

(e) 71 mile of 14 rch trans-frontier aletob errey were aleo done by No. 10 Party acronithe Burmene frontier,

TABLE İI．
details of triangolation and traversing．

Circle．	Party．	Locality．	triangolation．											traversing．				
						Minoe．			Tertiary．			Intrbergted POINTS．						
			$\begin{gathered} \text { 首 } \\ 0 \\ 0 \\ 0 \\ 0 \\ \text { 品 } \\ \text { d } \\ \text { 苞 } \end{gathered}$															
N		Kashmir ．．． 6	8，421	$7 \cdot 9$（a）	$7 \cdot 9(a)$	39 （a）	$10 \cdot 6$（a）	0.38 （a）	．．．	\ldots	\ldots	313 （a）	1／32（a）	．．．	．．．	．．．	．	．．．
N	No 2	Panjab ．．．	Not	ngulati	or itap	g we	done	year．										
N	No． 3	United Provincea ．．．．	Not	angulati	or trav	ing we	done thi	year．										
N	No． 4	United Provinces ．． 6			．．．	．．．		．．．	．．．	\ldots	．．．	．．．	．．．	．．．	$60 \cdot 3$	200	1.8	0.07
N	No． 4	Quetta Cantonment and Civil Lines（ $50 \mathrm{ft} .=1 \mathrm{in} . \& 16 \mathrm{in}$ ．$=$	17.53	5.8	$5 \cdot 8$	15	18.0	0.17	．．．	．．．	\cdots	30	$0 \cdot 20$	17.58	92－71	463	6.0	$0 \cdot 13$
s	No． 5	Central Provinces ．． 6	2，493	$3 \cdot 6$	$3 \cdot 6$	．．．	．．．	．．．	74	11.9	0.2	610	0.6	．．．	\cdots	．．．	\ldots	\ldots
S	No． 6	Berär and Hyderäbād ．． 6	2，800	（b）	（b）	35	9.3	0.2	49	9.2	0.2	（b）	（b）	．．．	707	5，718	4.4	（b）
S	No． 7	Madras and Mysore ．． 6	2，321	6.0	6.9	13	$4 \cdot 8$	0.1	11	7.0	0.1	351	0.5	．．	．．．	．．．	．．．	\cdots
S	No． 8	Madras ．．．．．．	\cdots	．．．	\ldots	\ldots	．．．	．．．	\cdots	．．．	\cdots	．．．	．．．	．．．	182	1，284	6.0	17
E	No． 9	Bibār and Orissa ．． 6	7，559	$7 \cdot 9$（a）	$7 \cdot 9(*)$	．．．	．．．	．．．	．．．	19 （a）	0.4 （a）	753 （a）	$1 \cdot 6$（a）	．．．	164 （c）	1，415	（b）	（b）
E	No． 10	Upper Barma ．．． 6	2，336	（ ${ }^{\text {）}}$	（b）	（b）	（b）	（b）	．．．	．．．	．．．	（b）	（b）	500	387	5，263	4.0	0%
E	No． 11	Karennj，Southern Shan States 6 and Lower Barma．	3，950	$5 \cdot 7$	5.7	31	$11 \cdot 3$	0.1	\ldots	\ldots	．．．	637	0.4	．．．	．．．	．．．	\ldots	
E	No． 12	Аяsam ．．．． 6	870	$5 \cdot 8$	$5 \cdot 8$	12	9	0.1	．．．	．．．	．．．	137	$0 \cdot 6$	2.386	491	2，196	3\％	1.6

[^0]TABLE III.
COST-RATES OF SURVEY.

PART II,-(IEODETIC SURVEY.

ASTRONOMICAL LATITUDES.

No. 13 PARTY.

(Vide Index Map 10.)
By Captain H. J. Coughman, R.E.
During the season 1911-12 only one officer was available for the two

Perbonnel.
Imperial Officers.
Major H. L. Crosthwait, R.E., in clarge.
$U_{P} p e r$ Subordinate Service. Mr. Bidhu Bhushan Shome.

Lower Subordinate Service. 2 computers, etc.
geodetic parties. This necessitated the selection of the same area for both latitude and pendulum operations, and one, moreover, where no long marches were necessary. The plains of Bengal were therefore chosen, and, in view of the large southerly deflection, $+10^{\prime \prime} 75$ found previously at Hurilaong (near Daltonganj) on the Hurilaong Meridional Series, this series and the Gurwāni Meridional Series were selected together with two stations on the Calcutta Longitudinal Series south of Hurilaong.

In addition to the 10 stations visited on these three series, one secondary station in the Siwālik hills was also occupied. The health of the party remained good throughout the field season.

The new Zenith Telescope by Messrs. T. Cooke and Sons was used for the first time this year, and, it may be here stated, gave satisfactory results. This instrument is larger than the old Zenith Telescope hitherto used, and has to be entirely taken to pieces on completion of work at a station, but, with practice, this does not take long.

The principal dimensions, etc., of the new instrument are as follows:-

Of these 60 was always used for latitude work, and 90 for measuring the micrometer wire intervals A. B. and B. C.

The total weight of the instrument is $160 \mathrm{lbs} .$, and with its boxes 260 lbs .
The illumination of the field is effected by an electric glow lamp, placed either in front of the object glass and reflected down the tube, or at the end of the transit axis. The former was generally used as being more satisfactory. An oil lamp is also provided in case the batteries or glow lamp should fail, but the light therefrom is not so good.

There are two Talcott levels, and, in addition to the ordinary rim clamp, a central screw clamp is provided, by tightening which the levels can be rigidly fixed to the telescope.

Determinations of the scale values of the levels were made at the beginning and end of the field season. The mean values used were:-

The length of 1 Division of Level No. 1 is more than twice as great as that of No. 4. The former level is thus the more sensitive of the two.

The individual values on which these means are based are not very satisfactory, more especially those taken at the beginning of the field season. Each level is enclosed in an oblong wooden case, and before placing on the bubble tester, it is necessary to take out the glass level tubes from these cases. The levels are therefore quite unprotected from air currents and changes of temperature during testing, and this probably explains the discordant results. It is however hoped that some device can be invented which will obviate this.

The probable error of the mean value of 1 division cannot however exceed $0^{\prime \prime} \cdot 05$, and, as level corrections of over $1^{\prime \prime}$ are very rare and there is no tendency for the corrections to be of one sign, the effect on the final latitude is negligible.

An arrangement is provided in the new instrument for turning the eyepiece through a right angle. This enables the micrometer value to be determined by timing successive transits of a circumpolar star over the movable wire. This method was employed in the field as well as the ordinary one of measuring the difference of declination of two stars of the same aspect. Reference will be made to these results later.

The stations visited and the values of the deflection of the plumb-line obtained are given in the following table :-

TABLE I.

Namr of Station.	Longitade.	Heiglt above M.S. L	Astronomical	Latitade.	Seconde of Geodetio Latitade	$\begin{aligned} & \text { Defection } \\ & A-G . \end{aligned}$
		Feet.	\bigcirc -	"	"	"
Bulbal H. S.	8426	3,352	$23 \quad 37$	53.44	$44 \cdot 63$	+ 8.81
Teona H.S. .	$84 \quad 10$	740	2434	49.76	38.94	+10.82
Mednipar T. S.	8422	335	$25 \quad 5$	22.35	14.02	+ 8.33
Nuand T. S.	8414	2.1	$25 \quad 34$	$45 \cdot 64$	37.94	+ 740
Jalalpur T. S.	8423	232	263	45:36	30-42	+ 6.14
Mahwâri H.S.	$84 \quad 54$	3,163	$23 \quad 26$	$8 \cdot 28$	4:96	+ 4.32
Mabâr H. S.	8510	1,606	$24 \quad 44$	$31 \cdot 12$	20.88	+10.24
Bibär H.S.	$8 \mathrm{~B} \quad 31$	391	$25 \quad 12$	$39 \cdot 27$	26.06	+1322
Dubauli T. S.	$85 \quad 20$	189	2540	2299	16.23	+676
Pahlădpur T. S.	$85 \quad 27$	175	$26 \quad 4$	27.24	21.01	+6.23
Khajnaur h. s.	7753	2,576	3016	56.70	29.63	-28.93

A+ sign denotes a southerly attraction of the plumb-line.
Bulbul H. S.-Is on the extreme northern edge of the hills which extend for some distance to the south. The ground immediately to the north drops steeply to about $1,000 \mathrm{ft}$. and there are scattered hills, (on one of which Hurila \because ng f. S. is situated), running up to $2,000 \mathrm{ft}$., and under. The distribution of local masses leads one to expect a marked southerly deflection.

Teona H. S.-Is on the top of a small granite hill rising some 250 ft . from the plain. The country generally is flat, the nearest hills being about 12 miles south. Purely local masses would seem to cause a slight northerly attraction.

Mahwäri H. S.-Is on the summit of a hill about 900 ft . above the olevated plateau which extends from the hills on which Bulbul H. S. stands to
some miles east of Ranchi. There are other scattered hills near by but otherwise the country is flat. The mass of the hill itself indicates a slight northerly deflection.

Mahär H. S.-The ridge on whioh this station stands extends for about 2 miles in the directions N. N. E. and South. The slopes are steep to the east, and to the west a spur runs for about 400 yards and the ground then falls rapidly. The country generally is flat but with scattered hills rather more numerous than at Mahwäri. The distribution of local masses should cause a small northerly attraction, but the hills to the south will more than overcome this.

Bihār \boldsymbol{H}. S.-At this station the largest southerly defleotion as yet discovered in India has been found. It stands on a low hill rising 200 ft . from the Gangetic plain which extends to the Himälaya on the north and for vast distances to east and west. The nearest hills to the south are about 12 miles away. The hill itself extends about 600 yards E. N. E. and 900 yards S. W. of the station. The ground falls almost sbeer on the north-west face of the hill, the latitude pillar being about 30 ft . from the edge. To the south-east the slope of the hill is about 10°. The closeness of the cliff to the latitude pillar must account for a portion of the southerly deflection and taking the mass of the hill as a whole there is also a preponderance to the south.

The remaining tower stations are all in the Gangetic plain, Pahlädpur, the most northerly, being about 100 miles from the outer Himālaya.

Khajnaur h. s.-Is in the Siwālik hills about 10 miles S. S. W. of Dehra Dūn. It stands on a spur running slightly west of north from the main range. The ground drops steeply to the north and the attraction of purely local masses is probably southerly.

Before discussing the results some further details of the observations are given in Table II below :-

TABLE II.

The probable errors in column 4 are somewhat higher than have been obtained in previous years with the old Zenith Telescope. This is no doubt due to the mean value of one revolution of the micrometer being in error. The persistence of the positive sign in the apparent error of micrometer value, (last column of the table), shows that the value used was probably too bigh. As stated above, this value was obtained in two ways:-
(1) By measuring the difference of declination of two stars.
(2) By timing successive transits of a circumpolar star, the eyepiece being turned through a right angle.
The mean values by each method were:-
(1) $50^{\prime \prime} \cdot 011 \pm 0^{\prime \prime} \cdot 0042$
(2) $50^{\prime \prime} \cdot 047 \pm 0^{\prime \prime} \cdot 0037$
and, as the probable errors by both methods were about the same, a simple mean $50^{\prime \prime} .029$ was used in computing the latitude.

The second method has two disadvantages:-
(a) If the eyepiece be not turned through exactly 90°, the micrometer value deduced will always be too great and will equal R cosec γ, where γ is the angle through which the eyepiece is turned and R the true value of one revolution. An error of 1° will increase \mathbf{R} by $0 " 008$.
(b) In moving the eyppiece it may possibly be slightly pulled in or out. This will alter the focus and the micrometer value. Besides these objections it is difficult to obtain satisfactory results by timing the transits by eye and ear. A chronograph is almost essential and this means more weight to carry in the field. It seems better, therefore, to keep to the old method of determining the micrometer value.
'The probable errors at Dubauli and Pahlādpur were recomputed using the value $50^{\prime \prime} .011$. These were found to be 0.033 and 0.035 against 0.052 and 0.047 , a considerable increase in accuracy. The effect on the colatitude is negligible, as positive and negative micrometer corrections are made to balance.

The deflection of the plumb-line at Khajnaur is less than those found at the four Siwazlik stations observed at the previous year, which ranged from $28^{\prime \prime} \cdot 90$ to $29^{\prime \prime} \cdot 59$. Nonc of these stations, however, were definitely on the northern slope of the range, as Khajnaur is, so that the decrease in northerly deflection was to be expected.

At all the other stations the deflections are southerly and seeing that the most northerly is only 100 miles south of the Himālaya and nearly 150 miles north of the hills round Hazāribagh, these results are at first surprising. Similar results have, however, been found previously, though not perhaps quite so close to the Himálaya.

The pendulums have shown that a trough of low density exists over all tbis area north of the Ganges and that the depth of the trough increases as the Himàlaya are approached. This satisfactorily explains the southerly deflections as the northerly attraction of the Himãlaya is minimised. The " bilden chain" to the south aiso increases the southerly deflections.

The decrease between Teona and Bulbul and betweeu Mahār and Mahwāri indicates that gravity is in excess between these stations and the pendulum results have shown that this is the carc.

The position of Bulbul at the extreme north edge of the hill must account for a portion of the southerly deflection and, when local topography has been allowed for, the change between Teona and Bulbul will probably be still greater than at present, showing more clearly the excess of gravity between the two stations. It seems probable that the summit of the chain of bigh density passes close to Mahwāri aud Bulbul and observations south of this line should be of great interest.

The large deflection at Bihār would also seem to point to an excess of gravity between that station and Mahār but, as explained above, it is probable that local masses account for a considerable portion of the deflection.

PENDULUM OPERATIONS.

No. 14 PARTY

(Vide Index Map 10.)
By Captain H. J. Couchanan, R.E.
The area selected for pendulum observations during the season 1911-12

Perbonnel.
Imperial Officer.
Captain H. J. Couchman, R.E., in charge.
Provincial Officer.
Mr. Hanuman Prasād.
Lower Subordinate Service. 4 computers.
extends from Ranchi and Daltonganj on the south to Muzaffarpur and Gorakhpur on the north. The large southerly deflection of the plumb-line, $\left(+11^{\prime \prime}\right)$, which had been found at Hurilaong, near Daltonganj, seemed to show that the belt of high density passed close to the south and gravity operations were accordingly undertaken to endeavour to determine more accurately the limits of this belt. The health of the party was good throughout the field season. The stations visited were :-

TABLE I.

	Station.				Latitude.	Lougitude.	Height above
1. Japla	- .	-	-		$\begin{array}{ccc}\circ & 1 & " \\ 24 & 31 & 58\end{array}$	\circ 84	Feet. 474
2. Daltouganj	- .	.			$24 \quad 2$	844	707
3. Ranchi	- •	.			$23 \quad 23 \quad 5$	$85 \quad 19$	2,167
4. Gaya	- -				$\begin{array}{llll}24 & 47 & 42\end{array}$	85 1)	361
5. Monghyr	. .				$\begin{array}{llll}25 & 22 & 53\end{array}$	$86 \quad 29$	154
6. Arrah	-	.			$\begin{array}{llll}25 & 34 & 10\end{array}$	$84 \quad 39$	188
7. Sasaram	. -	.			2+ 5721	83 59	340
8. Moghalsarai	. .	.	-		$25 \quad 17 \quad 3$	836	257
9. Buxar	- •		-		$\begin{array}{llll}25 & 31 & 42\end{array}$	83 5!	207
10. Muzaffarpur	- -	.	.		$26 \quad 7 \quad 5$	$85 \quad 25$	179
11. Majhauli Rāj	. .	-	-		$\begin{array}{llll}26 & 17 & 46\end{array}$	$83 \quad 58$	219
12. Gcrakhpur	- .				264458	$83 \quad 23$	257

Ranchi is near the eastern edge of the high plateau which forms the southern edge of the Ganges valley. Daltonganj is on the banks of the Koel river and is surrounded by detached hills running up to 1,000 or 1,500 feet. Japla is a few miles from the Son river on level ground with hills some 15 miles to the south. Gaya and Sasaram are close to the extreme southern edge of the Gangetic plain. The remaining stations are in this plain, Monghyr, Buxar and Moghalsarai being close to the river. The distance of the most northerly station, Gorakbpur, from the Himalaya is about 60 miles and its position is thus roughly comparable to that of Kaliāna, south of Dehra Dün.

At all these stations, thanks to the kindness of Civil and Public Works Department Officers, good rooms were placed at my disposal for the observations. Four complete sets of swings were made at each place, except where bad weather necessitated the extension of the observations. The average and hourly changes of temperature are given in the following table :-

TABLE II.

[^1]Observations for the flexure of the stand were made at the commencement and olose of work at eacls station, two sets being as a rule taken. The following table shows the mean value before and after work and the mean adopted for each station:-

TABLE III.

- The olock rate was determined by Mr. Hanuman Prasäd, using the Bent Transit Instrument by Messrs. Troughton and Simms. The mean p. e. of a olock rate determined from observations on two successive nights was ± 0.013 sec. and the mean p. e. of the rate derived from observations to one star on two successive nights was ± 0.056 sec.

Table IV shows the times of vibration of the four pendulums at Deira Dün in November 1911 and April 1912. The mean time of vibration, 0.5072 s 16 sec., has been adopted for reducing the season's observations :

TABLE IV.

	Date.	197	138	139	140	Mean.
	1911.					
Nov.	4-5	$0 \cdot 50725$ 70	0.5074990	0.5071609	$0 \cdot 5070887$	$0 \cdot 5072514$
	$5-6$	2593	4998	1619	0877	2522
	6-7	2564	5001	1620	0882	2517
	7-8	2574	${ }^{\circ} 4984$	1629	0886	2518
Mean		0.5072575	$0 \cdot 507493$	0.5071619	$0 \cdot 5070883$	0.5072518
Apl.	1912.					
	8-9	0.5072568	0.5074987	$0 \cdot 5071607$	0'5070883	0.5072511
	9-10	2592	4996	1611	0870	2517
	10-11	2585	4982	1615	0865	2512
	11-12	2584	4990	1617	0883	2519
Mean		0.5072582	0.5074989	0.5071612	$0 \cdot 5070875$	$0 \cdot 5072515$
General mean		0.5072579	0.5074991	0.5071616	$0 \cdot 5070879$	0.5072516
Difference, April-Nov.		+7	-4	-7	-8	-3

The increase in the mean time of vibration, which, as mentioned in last year's report has been going on since November 1909, has continued, the mean for the season 1910-11 having been 0.5072504 .

During April the pendulums were also swung in the new room at Dehra Dün which forms a part of the lately built bar alley and seismograph house. This room will be brought into regalar use from the commencement of the next field season; the observations made this year show that there is no appreciable differance between the two rooms.

In Table V are shown the times of vibration of the mean pendulum at all stations, together with the values of g deduced therefrom. The value of g at Dehra Dūn is assumed to be $979 \cdot 063$ dynes:

Table V.

		Station.					Time of Vibration.	Difference from Dehrı Dūn.	Observed value of \mathbf{g}.
							Sec.	Sec.	Dynes.
Dehra Dúd	-	-	-	-	-	-	$0 \cdot 5072516$...	$978 \cdot 063$
Japla	-	-	-	.	-	-	$0 \cdot 5073051$	$0 \cdot 0000585$	978.858
Daltonganj -	-	-	*	-	-	-	0.5073127	0.0000611	978.827
Ranchi	-	-		-		-	$0 \cdot 5073480$	$0 \cdot 0000964$	978.691
Gaya	-	.	-	-	-	-	$0 \cdot 5072980$	0.00100464	978.884
Monghyr	-	-	-	-	-		$0 \cdot 5072916$	$0 \cdot 0000400$	978.909
Arrall	-	-	-	-	.		$0 \cdot 5072893$	$0 \cdot 0000377$	978.918
Sasaram	-	-	-	-	-		0.5072930	0.00014114	978.903
Moghalsarai	-	-	-	-		.	0•5072889	$0 \cdot 0000373$	978.919
Buxar	-	-	-		-	-	$0 \cdot 5072852$	$0 \cdot 0000336$	978.933
Muzaffarpur	-	-	-	.	-	-	0.5072851	0.00003 .35	978.934
Majhauli Rāj	-	-	-	-		-	0.5072866	$0 \cdot 0000350$	978.928
Gorakhpur	-	-	-	-	.	-	0.5072846	$0 \cdot 0000330$	978.928

Table VI shows for each station the observed value of g , the corrections for height, mass and terrain and the deduced value of $g_{0}{ }^{\prime \prime}$ at sea level ; γ_{0} is the theoretical value of gravity at sea level, derived from Helmert's 1884 formula. $\gamma_{\circ}=978 \cdot 00\left(1+005310 \sin ^{3} \phi\right)$, where ϕ is the latitude of the station.
table vi．

í	$\begin{array}{ll} \dot{\Delta} & 0 \\ 0 \\ \dot{\circ} \\ \dot{\circ} \end{array}$	$\begin{aligned} & 5 \\ & \hline 0 \\ & + \end{aligned}$	$\stackrel{7}{8}$	$\begin{aligned} & \text { \% } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \text { ò } \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { 㻃 } \\ & \hline i \end{aligned}$	䀣	$\begin{aligned} & 0 \\ & i \\ & i \end{aligned}$	\％	¢	¢	？
\dot{i}	$\begin{gathered} \text { 曾 } \\ =\stackrel{\circ}{+} \\ + \end{gathered}$	$\begin{aligned} & \text { ®o } \\ & \text { © } \\ & + \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{\circ} \\ & + \\ & + \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{8}{0} \\ & + \end{aligned}$	$\begin{aligned} & \underline{\circ} \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { تِ } \\ & \text { ín } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 . \\ & + \\ & + \end{aligned}$	\＄	$\stackrel{0}{0}$	\％	N	傻
$\stackrel{\circ}{\circ}$			$\begin{aligned} & \infty \\ & \stackrel{\otimes}{\infty} \\ & \dot{\phi} \\ & \stackrel{\infty}{\delta} \end{aligned}$			$\begin{aligned} & \stackrel{\ominus}{\circ} \\ & \text {. } \\ & \stackrel{\infty}{\circ} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 简 } \\ & \text { © } \\ & \text { 官 } \end{aligned}$	： $\stackrel{+}{\infty}$ $\stackrel{\oplus}{\delta}$	\circ $\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\circ}$	© $\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\circ}$	\％
		$\begin{aligned} & \not: 8 \\ & \stackrel{\otimes}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{\prime}} \\ & \dot{\infty} \\ & \dot{\mathbf{x}} \end{aligned}$						$\begin{aligned} & \text { No } \\ & \text { io } \\ & \dot{\oplus} \\ & \hline \mathbf{\Phi} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { in } \\ & \text { ion } \end{aligned}$		
		$\begin{aligned} & \vec{\infty} \\ & \dot{\infty} \\ & \dot{\phi} \\ & \stackrel{\rightharpoonup}{\Phi} \end{aligned}$		$\begin{aligned} & \text { D. } \\ & \stackrel{\rightharpoonup}{\dot{\omega}} \\ & \stackrel{\oplus}{\Phi} \end{aligned}$		$\begin{aligned} & \stackrel{\oplus}{\oplus} \\ & \stackrel{\oplus}{\oplus} \\ & \stackrel{\oplus}{\oplus} \end{aligned}$		$\begin{aligned} & \text { 简 } \\ & \stackrel{\circ}{6} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \text { ion } \\ & \stackrel{\circ}{6} \end{aligned}$		$$	
	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	宫	\％	$\stackrel{0}{\circ}$	$\stackrel{0}{0}$	\％	¢0¢	웅	¢	¢	¢0\％	\％	¢
		$\begin{aligned} & \text { 毋̀ } \\ & \stackrel{+}{+} \\ & + \end{aligned}$	$\begin{aligned} & \text { 꾼 } \\ & \text { © } \\ & + \end{aligned}$	$\begin{aligned} & \text { 꿍 } \\ & + \\ & + \end{aligned}$	$\begin{aligned} & \underset{O}{\circ} \\ & + \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{+} \\ & + \end{aligned}$	$\begin{aligned} & \text { © } \\ & \stackrel{\circ}{\circ} \\ & + \\ & + \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { O} \\ & + \end{aligned}$	$\begin{aligned} & 9 \\ & \stackrel{3}{\circ} \\ & + \end{aligned}$	＋	＋	J O + +
			$\stackrel{\rightharpoonup}{8}$ $\stackrel{\oplus}{\circ}$ $\stackrel{\circ}{\circ}$		$\stackrel{9}{3}$ $\stackrel{+}{8}$ $\stackrel{\circ}{8}$			$\stackrel{9}{9}$ $\stackrel{\phi}{\phi}$ $\stackrel{0}{6}$				
	䔍	웅	$\underset{\sim}{\underset{\infty}{0}}$	$\stackrel{\square}{0}$	芯	－	융	尔	－	$\stackrel{\sim}{\sim}$	－	会
－	－${ }_{\text {d }}$	${ }_{\infty}$	$\begin{aligned} & \mathfrak{A} \\ & \otimes \end{aligned}$	：	$\begin{aligned} & \mathscr{\&} \\ & \varnothing \infty \end{aligned}$	$\begin{aligned} & \text { \& } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 8 \\ & \infty \\ & \infty \end{aligned}$		$\begin{aligned} & \mathbf{8} \\ & \text { Bion } \end{aligned}$	$\begin{aligned} & \text { レロ } \\ & \infty \end{aligned}$	$\begin{aligned} & \mathbb{D} \\ & \boldsymbol{D} \end{aligned}$	$\begin{aligned} & \mathbb{\infty} \\ & \mathbb{D} \end{aligned}$
$\begin{aligned} & \text { 品 } \\ & \text { 品 } \end{aligned}$	$\begin{array}{ll} = & \infty \\ - & \quad 1 \\ 0 & \text { ä } \end{array}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \cdots \end{aligned}$	10 § $\stackrel{7}{6}$	$\mathscr{9}$	$\begin{aligned} & \text { B } \\ & \text { ⿷匚 } \\ & \text { 웅 } \end{aligned}$			$\stackrel{\wedge}{A}$ เ			$\begin{aligned} & \mathscr{1} \\ & \underset{\sim}{A} \\ & \otimes \end{aligned}$	
＋		a 0 0 0 3 0		$\stackrel{\otimes}{d}$								宮 点 0 0

The last column of the table shows the amount by which gravity is in excess or defect assuming that all surface masees are entirely uncompensated and of density $9 \cdot 8$. The column headed $s_{0}-\gamma_{0}$ shows the residunls based on the assumption that surface masses have no effect. These residuals need not be considered, as whatever theory of underground compensation is assumed, it is certain that surface masses must always produce some effect on gravity.

Considering, then, the values of $g_{0}^{\prime \prime}-\gamma_{0}$ it is first to be observed that these are all negative with the sole exception of Daltonganj. This was to be expected for the stations in the Gangetic plain, as these are fairly close to the Himalaya and we find the same decrease in gravity residuals as the hills are approaohod as was discovered from Kisnapur to Siliguri and Meerut to Dehra Dün. The actual defect here is, however, greater than has been found previously, for at Kaliana, which is about the same distance from the Himilaya as Gorakhpur, the defect in gravity is 055 and at Kesarbari, which is slightly nearer, it is 043 .

The whole of this season's area north of the Ganges may, therefore, be considered as a trough of unusually low density and this may help to explain the large southerly deflections which have been found south of the river, at Bihār, Mahär, Teona and Hurilaong, cide the Report of No. 13 Carty, (Astronomical), page 40. The effect of this trough is to mask the attraction of the Himālaya, as in itself it produces a southerly deflection at stations south of it.

With regard to the location of the hidden chain of high density, it is perhaps unfortunate that no obserrations were made south of Daltonganj and Banchi. Practical considerations, however, prevented this; there is no railway and an obserratory for the pendulums would hare been hard to find. A study of the deflections of the plamb line found this year seems, howerer, to show that the crest of the "hidden chain" must be somewhere near Ranchi and though gravity is actually shewn to be slightlr in defect there, it is less in defect than at stations to the north, Gaya and Arrah. Ranchi, therefore, is probably on the "hidden chain," but until observations are continoed southwards it is not possible to define the actual crest.

The greater part of the recess season has been spent in an investigation of the isostatic theory as far as concerns gravity results. The particular theory employed is that of Mr. Hayford, which, stated shortly, is that compensation is complete at a depth of $\mathbf{7 0}$ miles. Above that depth, therefore, the amount of matter in a cylinder standing on a base of unit area and extending from 70 miles below sea-level to the earth's surface is always the same whatever the height of the cylinder.

In Volume 1 of the Records of the Surver of India, 1909-10, mention was made of this investigation but as at that time it had only been carried to a distance of $\mathbf{1 0 0}$ miles from each station, no figures were given. Outside this radius the zones and compartments into winich the surface of the earth is divided are those used by Mr. Hayford, who has so designed them that a mean height of 100 feet in each compartment produces a correction of 1×10^{-n} dynes, p being an integer increasing from 4 to 6 . No sheck has plied to bis calculation of the radii of zones.

Inside the 100 miles radius, zones dif have been used and the necessary reduct
by Captain H. M. Cowie, R.E., and recomputed by me. The radii of these zones are :-

The outer radius of zone 16 is the same as the inner radius of Mr. Hayford's zone 18 which, expressed as the angle subtended at the earth's centre, is $1^{\circ} 29^{\prime} 58^{\prime \prime}$, and as his zones extend to the antipodes the whole surface of the earth is dealt with.

Dealing first with the stations visited this year, the following are the residuals after applying " Hayford" corrections for topography and compensation. For the sake of comparison the Bouguer residuals are also shown, and have been recomputed using the same surface density of the earth (2.67) as that assumed by Mr. Hayford. The mean surface density used in our gravity work is $2.8:$ -

It is first to be observed that the difference $H-B$ is positive in every case. If, however, we use Helmert's 1901 formula for the normal value of gravity at sea-level, we reduce these positive values. This formula referred to the Potsdam system (as our base value at Dehra Dün is) is $978.030(1+0.005302$ $\left.\sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right)$ where ϕ is the latitude of the station.

The values of γ computed by this formula are greater than the old values by 025 for the first 6 stations of the table, Ranchi to Moghalsarai, and by 024 for the remainder. The values of $g-\gamma$, (Hayford), should therefore be decreased by this amount and we have the following residuals :-

Station.			$\mathrm{g}-1$	Stati			$\mathrm{g}-\mathrm{\gamma}$
Ranchi	. .	.	$+\cdot 029$	Monglayr	-	-	- 024
Daltongranj	-	-	$+\cdot 025$	Arrah		.	-.027
Japla	- •	-	+.002	Buxar			-.014
Gaya	- •	-	$+\cdot 003$	Muzaffarpur	-	-	-.040
Sasaram	- .	,	+.008	Majhauli Rāj		-	-.058
Moghalsarai	. .	-	-.005	Gorakhpur	-	-	-.070

The differences $\amalg-13$ will also of course be decreased by the same amounts and will vary from +031 at Gorakhpur and +026 at Ranchi to +.008 at Moghalsarai.*

As might have been expected from a consideration of the problem, the differential residual between two stations in the plains has hardly been changed. It is at stations on and near high ground where differences are to be expected. Thus we find that the excess of gravity at Ranchi is greater than the excess at Gaya ly $0 \div 6$, using Hayford's theory, whereas, by Bouguer's method, the increase is only '010. Similarly the difference . between the residuals at Daltonganj and sasaram is increased from 009 to 017 . As we approach the Himanlaya the differences between the residuals are decreased by the new method, cf. Buxar and Gorakhpur, but the effect of the high ground is the same, as g is increased by a greater amount the nearer the hills are to the station, and as will be seen later the large negative residuals found at the foot of the Himãlaya are in some cases converted into positive ones and in all are very greatly reduced.

The new residuals at stations south of the Ganges valley, the first five of the table, seem to be more in agreement with the observed deflections than were the Bouguer residuals. The large excess of gravity at Daltonganj oombined with the nearly normal value at Japla helps to explain the big southerly deflection at Hurilaong, (near Daltonganj), and Teona, (near Japla). Similarly

[^2]the excess nt Ranchi combined with the defect at Arrah accounts for, the southerly deflection at Bihār, (40 miles south-east of Arrah), and Mahār, (close to Gaya). The hidden chain is also well shown, but as mentioned above we cannot yet be certain of the actual crest.

Several stations on the line Calcutta to Darjeeling were next examined and the Bayford residuals found are shewn below. γ bas been computed by Helmert's 1901 formula : -

	Station,		Latitude.		g-7.		H-B.
					H	B*	
Cbatra.	-	-	24		$+\cdot 005$	$+1009$	$-\cdot 004$
Kisnapur	-	.			$+\cdot 039$	$+\cdot 093$	+ 0000
Jalpaigruri	.	.			- 019	-.090	$+.07 \%$
Siliguri .	-	-			-0:9	- 186	$+\cdot 0!i$

* Bonguer corrections computed with density 267.

The residuals at the stations in the plains are not much altered, but close to the Himalaya, as at Jalpaiguri and Siliguri, the change is very great. It is probable, arguing ly analogy from Mussoorie, that at Darjeeling the residual will be positive.

On the line of stations from Meerut to Mussoorie on the meridian 78° we have the following :-

In Professional Paper No. 12 "On the Origin of the Himālaya Mountains" Colonel Burrard has shown that the rapid change of deflection found all along the foot of the Himalaya can be explained by assuming the existence of a rift in the earth's crust or sub-crust. The residuals given above seem to bear out this theory very well. The deepest part of the rift would seem to be near Roorkee and the slope on the northern side is apparently steeper than on the southern, vide Professional Paper No. 12, page 7, line 31. On the CalcuttaDarjeeling series the deepest part of the rift seems to be near siliguri as Kurseong and Darjeeling will probably give positive residuals.

The increasing positive residuals from Dehra Dūn to Mussoorie seem to show that the Himālaya are not completely compensated. This does not necessarily mean that they are uncompensated but merely that the assumption of complete compensation does not entirely explain the observed phenomena. If we make some assumption of partial compensation we shall alter the Hayford correction at every station, but the change will be small except near the Himàlaya. A rough computation, made on the assumption that the Himālaya are three-fourths compensated, reduces the residual at Mussooric by 036, at Kaliāna by 0010 and at Gesupur by 005 .

It is, however, claimed that the assumption of complete compensation has materially improved the residuals. It has to a great extent got rid of the large negative residuals at the foot of the Himãlaya, and has shown more clearly the "rift" at Roorkee and Siliguri and the "hidden chain" at Ranchi, Kisnapur and south of Gesupur.

Hayford residuals have been computed at four stations in Central India. These are here shown :--

- Bouguor correotions computed with deusity 2-67.

At all these stations gravity is now found to be in excess, but the point to be noted here is that the persistence of negative Bouguer residuals at elevated stations has been explained by the new method. These nerative residuals point to the probability of comprnsation, and we now see that, by assuming compensation, the change in residual between an elevated and a low lying station is reduced. Thus is also borne out in the case of Ootacamund where the Hayford residual is $+\cdot 017$ compared with a Bouguer residual of -020 .

At all the stations given ahove, with the exception of Chatra the Hayford hypothesis has incroased the residuals. This is of course due to the decrease of $\boldsymbol{\gamma}$ caused by the deficiencies of density assumed to lie under elevated
ground. When, however, we appronch the coast we expect to find the residuals decreased, as here the assumed excess of density under the sea will increase γ. Chatra is about 170 miles from the Bay of Bengal and there the positive effect of the ocean compensation has just oancelled the negative effect of that of the land. At Cuttack, 50 miles from, and Madras on, the coast the positive effects are more marked. The new residuals are +006 at Cuttack and -.053 at Madras as against Bouguer residuals of +029 and $+\cdot 014$. The big negative residual at Madras is somewhat against the isostatic theory, but we cannot assume anything about ocean compensation until other coast stations have been examined. The Bouguer residual at Bombay is $+\cdot 088$ and the new residual will almost certainly be positive but small.
'Tws other stations, only, have so far been dealt with. These are Pathānkot and Mian Mir. At the former we have the largest Bouguer residuul that has so far been found, -177 and at the latter there was an apparent small excess $+\cdot 005$. The Hayford lypothesis has accounted for one-third of this difference of residuals, the now figures being -077 and $+\cdot 010$.

The defect at Pathānkot by the new method is now seen to be little more than at Gorakhpur and seeing that the latter is much farther from the Himālaya, we may reasonably expect to find still greater deficiencies at stations north of it.

The results of applying the new method may be briefly stated thus :-
(1) At all stations within 200 miles of the coast and below about 1,000 feet in height, the new residuals will be less positive than the Bonguer ones.
(2) At all other stations the new residuals will be more positive or less negative than Bouguer. The increase will roughly vary with the height of the station and will become rapidly greater as the Himalaya or other hills are approached.
It must be remembered that our knowledge of the heights in Southern Asia and Tibet is still somewhat vague. In this iinvestigation the height of the Tibetan plateau has been assumed to be 15,000 feet. If we reduce all our estimater of Himālayan and Tibetan heights by 1,000 foet we shall reduce the residual at Debra Dựr ly about 008 .

The effect of all zones outside a radius of about 400 miles (Hayford zone 10.12) Las been interpolated from the three charts constructed last yoar by Major E. A. Tandy, R.E. These charts show the effects of topography and compensation combined of the actual surface of the earth in :-

Cbart (1) Zones 11 and 10, 400 to 750 miles.
.. (2) Zones 9,8 and 7,750 to 1,850 miles.
,, (3) Zones 6 to $1,1,850$ miles to antipodes.
For the first chart the effects at 31 stations were computed, for the second, 17, and for the third, 4. Lines of equal effect were then drawn and the effect at any station can thus be read off the chart. This has saved an immense amount of labour.

It is only necesaary to add that the Hayford zones 18 to 14 were divided into 10 equal parts and the height in each compartment estimated and entere. 1 separately, the mean leeing then taken.

The table below shows the computation of the total effect at three selected stations. The unit is 0.00001 dyne.

Nofe, - Figures in italies are inferpolated from charts.
The first 16 zones are those of Captain Cowie, the remainder from 18 to 1 are Mr . Hayford's. The radii of these latter zones are expressed for convenience
as arcs of a great circle. The inner radius of zone 18 (Hayford), viz., 103.6 iniles, is equivalent to an are oî $1^{\circ} 29^{\prime} 58^{\prime \prime}$.

Dehra Dùn is a submontaue station about 7 miles from the foot of the Himajaya and its beight is 2,210 feet. Arrah is close to the Ganges river in the centre of the Gangetic plain. Madras is on the coast. The signs of the corrections are applioable to γ and not g. Topography produces a positive correction, its compensation a minus, and vice versá for oceans.

At Dehra Dün we see that the effect of the topography is greater than that of the compensation for the first 9 zones, i.e., up to a distance of 3 miles from the station. leyond this point, until the extreme zones 6 to 1 are met with, the corrections are all negative showing that land areas predominate. The IIimilayas first begiu to make themselves felt in zone 11 (Cowie). At Arrah owing to its lesser height the effect of the topography is overcome at a distance of just over one mile. The corrections up to zone 14 (Hayford), are all small, but at this noint the Himallayas are met with. At Madras the local effects are small, since the height is only 20 feet. The positive signs beyond zone 11 (Cowie), show that ocean areas predominate.

In the season 1909-10 observations were made at Sultānpur, Latitude $26^{\circ} \mathbf{1} 6^{\circ} 6$ ", Longitude $8 \jmath^{\circ} 5^{\prime}$, height 314 feet, but the results were not included in the report as the height was not then known. The value of $y_{0}^{\prime \prime}-\gamma_{\nu}$, (Bonguer), is -040 and, as the station is somewhat further from the Himālaya than Muzaffarpur and the Bouguer residual somewhat less, it seems that the trough of low density, of which mention has been made above, extends as far as Sultānpur.

It is proposed to swing the pendulums at Kalianpur, (the station of origin of the Survey), and stations round during the ensuing field season. The results to be olitained should throw light on the assumed southerly deflection at Kaliānpur.

HENRY GORDON BELL, LIEUTENANT,
ROYAL ENGINEERS,
Died at Lup Gaz in the Pamirs, July 26th, 1912, aged 27.

PART III.-TRIANGULATION.

No. 15 PARTY.

(Fide Index Maps 9 and 10.)
By Captain H. M. Cofie, R.E.
During the year 1911-12, the party provided seven detachments, all of which, however, were not at work con-

Pergonnal.
 Imperial Officers.

Major H. H. Tarner, R.E., in charge.
Lieutenant E. P. Carden, R.E., up to 30th September 1911.
Lientenant F. J. M. King, R.E., up to 3rd Moy 1911.
Lieatenant H. G. Bell, R.E.

Provincial Officers.
Mr. C. H. Tresham.
Mr. Abdul Hai.
Mr. V. D. B. Collins.
Mr. F. W. Smith.
Mr, G. A. Norman.
Mr. B. T. Wyatt.
Mr. Abdul Karim.
Mr. K. S. Gopalaobari.
Mr. V. P. Wainright.
Mr. C. S. McInnes.

Uppor Subordinate Service.
Mr. Jugal Bihāri Lal. temporaneously. One detachment under Mr. Tresham, Extra Assistant Superintendent, was employed, during the cold weather months, on principal triangulation, making a commencement on the Sambalpur Meridional Series. During the same period, there were at work three secondary detachments on the Ranchi, Bhir, and Villupuram Series. Both the Ranchi and Villupuram Series were of short length and, being completed before the end of the field season, their personnel was redistributed between two new detachments which started work on the Madura Series and the Bombay network. Still later, at the conclusion of the cold weather season, on the disbanding of the detachments employed in India, a detachment was formed to carry on the work in Kashmir, for which preparations had been made the previous year. This last detachment closed its field season in October 1912. The work of the Kashmir Detachment during the summer of 1911 has been recounted in last year's report. This year's report continues the narrative up to the end of the 1912 season. At all times during the year there has thus been some detachment of No. 15 Party at work in the field.

Wherever detachments of the party have been engaged, Orissa, Bombay, the districts of South Aroot and Tanjore in Madras, the Hyderābād State and the Gilgit Agency, they lave met with willing and effective assistance from local officials. When difficulties arose, these were, in every case, promptly dealt with by the Civil executive and the work of the party was thereby much facilitated.

The health of the personnel varied a good deal between detachment and detachment. In the Sambalpur, Ranchi, and Bhir detachments the number of cases of sickn'ss was not abnormal, though in the Bhir detachment a slight outbreak of cholera occurred. Thanks, however, to prompt repressive measures, the disease was stamped out. In the Villupuram and Madura establishments there was a good deal of fever owing, in part, to the locality, in part, to the lateness in the season of the closing of work on the latter series.

The news received in July, from Hunza, of the death ol Lieutenant H. G. Bell, R.E., came as a great shock. His letters had given no iudication of his
being other than ordinarily well and fit and except for slight temporary indisposition while at Gilgit, he does not appear to have been in ill-health. Only a few days before his death, he paid a visit to the Russian Survey Camp, near Kizil Rabat, and se-ms to have been well in spirits as in bods. Of his actual illness, it his been impossible to obtain more than the most meagre account. What was found afterwards by post-mortem examination to have been appendicitis began on 19th July when he was encamped praciically alone at an observing station near the Mintaka Pass. Getting no relief, he was carried down to his main camp at Lup Gaz, some 8 miles from the Pass. Here, one of his assistant officers arrived on 25tb, in response to a message despatched that morning, and found Lieutenant Bell extremely reduced and weak. But until quite- near the ond, neither he nor Lieutenant Bell had any idea of the extrems gravity of the cise. His vitality failing rapidly late that night, Lieutenant Bell died about midnight.

It was proposed at first to bring the body to Gilgit for burial there, but the state of the Kanjut river made this impossible. So interment took place at the Mintaka Pass.

It was due in very great measure to Lieutenant Bell's energy that the operations progressed so far during a short and unfavourable season. Starting rather late in the year, and continually hampered by bad weather, he succeeded nevertheless in having the whole course of the triangulation from Gilgit to Beyik reconnoitred in detail, and, excepting over a distance of some 30 miles, the stations selected and built. At a few of the stations, at both the northern and southera ends of the triangulation, observations also have been completed. When we consider the great altitude at which operations hal to be conducted, the difficulties put in the way of rapid work and simple organisation by the unpropitious nature, both of country and climate, the solitude and the physical hardships waich had to be faced at, all times, we must re:lise that this Indo-Russian triangulation, the ultimate success of which will undoubtedly be due to Lieutenant Bell's energy and devotion, is fit to rank with the memorable achievements of the Survery of India.

The following accounts deal in greater or less detail with the operations of each detachment :

Details of Principal Triangulation.

Sumbelpur Series.-'The desirability of a series of principal triangulation on the meridian of 81°, between the parallels of 18° and 24°, has long been recornised; and on additional urgency being given to the matter by the necesity in this region for w'll fixed points on which to base secondary triangulation for opogranhical purposes, it was decided to run a principal moridional series emanating from the Calcutta Longitudinal to close on the East Coast Series in about Lat. 19°.

The scheme of operations drawn up tentatively, before the detachment under Mr. Tresbam lift for the field, contemplated the springing of the new triangulation from the side Birpokar (XLV)-Turer (XLI) of the Calsutta Longitudinal Series. On his arrival on the ground, Mr. Tresham found, lowever, that the country to the south of the proposed base was most unsuitable for principal triangulation. Plateau lay beyond plateau, each thickly wooded, on which the location at suitable distances apart of mutually visible
stations was extremely difficuit. Well-proportioned figures without grazing or obstructed rays could be laid out only by introducing tower stations. The topographical conditions place this region among the most difficult, from the triangulator's point of view, that India has to offer.

This base was accordingly abandoned and reconnaissances were made to the east to locate a suitable site from which the new series might spring. Breaking off from the side Turer-Gobra would have entailed the introduction into the first figure of a side only 7 miles in length and the succeeding figure promised to be still worse proportioned. The side Birpokar-Bagru was also found to be unsuitable. Eventually a feasible schense of triangulation was evolved, based on the side Bhursu (XLIX)-Harihārpur (L). This consisted of a quadrilateral, as first figure, followed by a pentagon with a central station and a quadrilateral carrsing the series from 85°, the mean longitude of the base, in a south-westerly direction till it lay astride the meridian of 84°, whence it trended due south. This scheme involved a deflection by 1° of the series from its ruling meridian of 84°, but this was held to be less objectionable than the adoption of an expensive programme involving the building of tower stations.

Observations were commenced by Mr. Tresham on 13th December and continued by him till 10th January when he handed over charge of the operations temporarily to Lieutenant H. G. Bell, R.E., while he underwent an operation for appendicitis. On recovering from this, he again assumed charge on 38th February and continued work till April 15th when field operations were suspended for the season. The series had by that time been carried south to latitude 22°, and consisted of four quadrilaterals and one pentagon with a central station, the two southernmost figures lying along the meridian of 84°.

An astronomical azimuth was observed by Mr. Tresham, at Bhursu H. S. of the Calcutta Longitudinal Scries, latitude $23^{\circ} 16^{\prime}$, longitude $84^{\circ} 44^{\prime}$, the difference, (Astronomical-Geodetic), in the value of the Azimuth of Bagru ras found to be - $6^{\prime \prime} \cdot 07$.

Particulars of the work are given below:-

Detalls of Secondary Triangulation.

Kashmīr Secondary Operations.-In 1909, the International Geodetic Conference passed a resolution embodying the desirability of effecting a junction between tho Indian triangulation and Russian work in the Pamirs. Accordingly, during the summer months of 1911, after the completion of observations which carried the Kashmir Principal Scries to points not far south of Gilgit, reconnaissances wero undertaken of the country intervening
between that series and the Pamirs, with a view to discovering a practicable route to be followed by the Indo-Russian connection. Three schemes were suggested to the officers entrusted with the reconnaissances.

The first was to extend the Kashmir Principal Series as far as the Sakiz Jarab range, on which stations would be established to the east of the Darkot pass. From these points it was hoped that observations might be made to Conoord and Salisbury Peaks on the Afghan-Russian border, which peaks would be included by the Russian observers in their triangulation on the Pamirs. The investigation of the practicability of this scheme was undertaken by the late Lieutenant H. G. Beli, R.E. He reported that the main chain of peaks of the Sakiz Jarab range was inaccessible and that the hills immediately to the south, only a little less difficult to negotiate, though they offered a satisfactory view to the north, were hidden from the south by high inaccessible peaks, effectually obstructing triangulation carried from the terminal points of the Kashmir Principal Series.

A secoud scheme involved the carrging of secondary triangulation from the Principal Series, up the Yasin and Karambar valleys to the neighbourhood of the Gazan and Bhort passes, from which the Concord and Salisbury peaks might be visible. After finding that the carrying of triangulation to the Darkot pass was not feasible, Lieutenant Bell turned his attention to the Karambar valley. He found that secondary triangulation could probably be taken as far as Harmot or Imit but that beyond this place the valley narrows considerably between precipitous hills and further progress was impossible.

The third alternative scheme was examined by Mr. Wainright. This was for secondary triangulation to break off from the Principal Series just south of Gilgit and to follow the Hunza and Kaujut valleys as far as the Kilik and Mintaka passes and from thence to extend over the Taghdumbash Pamir to a junction with the Russian points. This scheme was found to be practicable. The valley as far as Hunza is comparatively open and the hills, though difficult, not inaccessible. Beyond Hunza, though the valley narrows in somewhat, fairly well conditioned figures can still be laid out as far as Misgar. Here, in order to obtain triangles of sufficient length of side, the series has to run westward, out of the valley, and bending again in a general northerly direction, approach the Kilik pass from the south-west. From this pass the triangulation can be easily carried across the Taghdumbash Pamir to the Russian points near the Beyik pass.

As, by the time the reconnaissances had been carried out, the season was getting late and unfavourable weather was setting in, nothing further could be done that year. 'The Party returned, in the autumn of 1911, to India and a programme of work for 1912 was elaborated. With its final scheme worked up as far as possible, the detachment left India in May 1912 to commence the actual obscrvations. Recruited under Lieutenant H. G. Bell, R.E., during the latter half of April at Rawalpindi, after completing its equipment, it, marched to Gilgit. Bandipur was reached on the 8th May, some little delay having been caused by deep snow encountered in the Tragbal and Burzil passes. By May 31st all the detachment had been assembled at Gilgit and there the plan of operations was given final shape. Reconnaissances of the previous year had shown tiat the Eunza and Kanjut valleys were probably practicable for triangulation, which, following this course, might be carricd up to the Taghdumbasb Pronir to effect a junction with the Russian triangu-
lation, the terminal points of which were situated in the neighbourhood of the Beyik and Sarikoram passes. It was proposed to base the triangulation on a side of the Kashmir Principal Series in latitude $35^{\circ} 55^{\prime}$ and longitude $74^{\text {c }} 20^{\prime}$; to carry it thence northwards to about latitude $36^{\circ} 12^{\prime}$, where, following the valley, it would trend eastwards to longitude $74^{\circ} 20^{\prime}$ and at this point, near Atābād, it would again extend north to the Kilik pass in latitude $37^{\circ} 07^{\prime}$.

From this pass, the Russian points lie to the north-east on the far side of the Taghdumbash Pamir in about latitude $37^{\circ} 20^{\prime}$, longitude $75^{\circ} 10^{\prime}$.

Between Gilgit and Hunza, the valley of the Kanjut river is comparatively open, the hills on either side are more accessible than is the case higher up the valley and as far as Hunza a graded road runs along the right bank of the stream. In the neighbourhood of Baltit lofty snow masses rise above the valley on both banks. On the left bank, Rakiposhi peak attains a height of $25,550 \mathrm{ft}$., while towering over the nearer masses on the right are the Humza peak ($25,050 \mathrm{ft}$.) and a group of summits all over $24,000 \mathrm{ft}$. in height.

Beyond Baltit the hills close in to the stream, the sloper become barren and rugged and progress correspondingly more difficalt. In many places the pathway is carried along the face of precipitous scarps supported, gallerywise, on iron or timber struts; in others the pathway climbs the hill side till it is possible to skirt the top of precipices too formidable to be dealt with by any such type of bridging. These steep ascents and subsequent descents to the villages lying close to the river, make marching in the summer months most trying ; the heat in the narrow rocky valley is intense and travelling is, whenever possible, done before sunrise. After the flood water in streams has subsided, about November, the hillside path over the difficult stretches is generally forsaken for the river bed. Four marches above Baltit, the lower end of the much serrated and crevassed Batur glacier is encountered. About 1 mile in width at this point, this glacier, striking the Kanjut valley at right angles, forces its way across the river bed, butting up against the hills on the left bank. Seven marches from Baltit the junction of the streans from the Mintaka and Kilik passes is reached at Murkushi. Here there is a small grassy level thickly covered with willows, the last timber seen on the march to the Pamirs. From Murkushi two routes lead to the Taghdumbash Pamir, one viat the Kilik, the other over the Mintaka pass.

The scheme decided upon by Lieutenant Bell was that he and Mr. McInnes should march at once to the Russian points on the Beyik pass and, commencing building and observing there, work gradually over the Kilik and Mintaka passes and down the Kanjut valley to effect a junction with the triangulation which Mr. Collins and Mr. Aldiul Karim were to carry from its lower end as far up the Hunza valley as they could. In the meantime Mr. Abdul Hai was to elfect a junction between the Kashmir Principal Scries and the figures laid out hy Mr. Collins in the Hunza valley.

The various sections left Gilgit for their respective localitics during the first week of June, but owing to unfavourable weather, very little reconnaissance and no observing was possible until 23rd. It was during this spell of bad weather that Mr. Abdul Hai's Camp on Yasho Chish Peak was struck by lightning. His servant was killed; his recorder was severely burut, while he himself received a shock necessitating his return to Gilgit and eventually to hewd-quarters in India.

Yasho Chish is one of the stations of the Kashmir Principal Series and was the first point visited by Mr. Abdul Hai in his attempt to effect a conncetion between this Series and Mr. Collins' Huuza valley work. On the recall of Mr. Abdul Hai, the responsibility of this connection fell to Mr. Collins who had, in the meantime, carried the reconnaissance and building of stations up the right bank of the river as far as Hunza. Leaving Mr. Abdul Karim to continue from there the building up both sides of the valley, he returned to Gilgit and took up the observations, commencing at the base stations on the Kashmir Series. By July 28th he had completed work at four stations when he received news of Lieutenant Bell's death and returned again to Gilgit to assume charge of the detachment.

Lieutenant Bell and Mr. McInnes, on leaving Gilgit early in June, marched through the Kanjut valley and over the Mintaka pass to the Russian stations on the Beyik, which they reached on June 20th. Lieutenant Bell then took up tbe work of observing while Mír. MicInnes proceeded southwards towards the Kilik pass, reconnoitring and selecting stations. While on the Beyik, Lieutenant Bell spent one day with the Officers of the Russian Survey Party encamped near Kizil Rabāt. Compliments were exchanged and experiences related. In one of his letters Lieutenant Bell alludes briefly to this meeting; "dressed in long boots of the country and a choga, escorted by three local headmen and ly Hunza interpreters, I crossed the Beyik pass into the Russian territory to meet the Russian Surrey Officers. I was met by a cavalcade consisting of the Colonel, a Captain, a Lieutenant and their escort of cossacks and cavalry."

Lieutenant Bell had completed observations at three stations and had moved camp to his fourth station near the Mintaka pass when he was seized, on 19th July, by an attack of appendicitis. Obtaining no relief and suffering much, he moved down to Lup Gaz, some 8 miles north of the Mintaka pass, and on 25th morning sent to Mr. McInnes, then in the neighbourhood of the Kilik pass, asking for assistance. Mr. McInnes arrived at Lup Gaz on the afternoon of the 25 th to find Lieutenant Bell very weak. During the previous five days there had been no sign of any detinite improvement in his condition and after Mr. McInnes' arrival at Lup Gaz, the malady seemed to become gradually more acute. Late in the evening Lieutenant Bell began to sink rapidly and about midnight he died. His body was interred temporarily near the Mintaka pass to be brought down later, when the state of the Kanjut river permitted, to Gilgit for burial in the cemetery there.
'i'he detachment was now reduced to three observers. The lateness in the season, the remoteness of the locale of operations and the impossibility, in any case, of completing the triangulation this year, were against the sending of another officer to take Lieutenant Bell's place.

The charge of the detachment now devolved on Mr. Collins, who continued observations on the section between Atalbād and Gilgit, directing Mr. McInnes to take up the selecting and building of stations in the difficult country between the former place and Misgar, while Mr. Abdul Karim undertook the laying out of triangles southwards from the Kilik pass, where Mr. McInnes had stopped, to Misgar. Mr. MeInnes laid out six stations, forming sufficiently good figures, carrying the serics to Misgar where he connected with Mr. Abdul Karim's section. This last portion of the triangulation between the Kilik pass and Misgar, howerer, was very poor. The course selceted for the sories was badly chosen and the figures laid out were unsatisfactory. Before, however, a better disposition of stations could be arrived at, the weather
Beyik, July 9th, 1912. Colonel Tchkeine and the Russian Survey Party.

got rapidly worse, and winter began to set in ; new snow had fallen down to a level of about 11,000 feet, and the work of observing became daily more difficult. Field operations were accordingly closed on 18th September, the detachment recalled to India and dislaanded on October 25th at Dehra Dūn.

Ranchi Series.-A detachment under Mr. Wainright was employed in carrying a series of secondary triangles along the parallel of 23° between the South Parasnath Series and the new Sambaipur Series. This triangulation, called the Ranchi Secondary Series, is based on the side Gorgabaru (I)Dalma (IV) of the South Parasnath, and, extending through 13 triangles, closes on a side of the Sambalpur Meridional Series.

Some difficulty was experienced at the commencement of operations, in breaking off from the principal series, owing to the unfavourable nature of the country. As in the case of the Sambalpur Principal work, thickly wooded plateaux made the selection of stations somewhat difficult. The greater part of the series, however, lay in more easy country.

The number of stations observed was 18

Bhîr Series.-This Secondary Series, along the parallel of 19°, emanates from the side Dhaigaon (XXXIV)-Maturi (XXXIII) of the Khanpisura Series and closes on the side Somtana (XXXIV)-Shivalingapa (XXXVI) of the Great Arc.

The detachment under Mr. F. W. Smith, with Mr. Norman as assistant, reached Ahmadnagar on 17th October. Mr. Smith took charge of the work of srlecting and luilding stations and, after repairing the two base stations on the Khanpisura Series, pushed out eastwarl", (itablishiug stations closing the series on the Great Arc; thence extending still further eastwards, he selected and built thirtecn more stations carrying the Bhir Secondary work as far as the Jabalpur Meridional Serics.

Mr. Norman, in the meantime, succceded in completing the observations over the 24 triangles betwern the Khanpisura and Great Are Series.

No particular difficulties were encountered. The series was carried through the northern tract of the Hyderānd State where the tonographical features lend themselves readily to triangulation.

During the season a slight outbreak of cholera occurred in the detachment, but matters were kept well in hand by Mr. Norman, who, taking prompt and effective measures, succeeded in stamping out the disease.

The outturn of this detachment was most creditable.
The details of the work are :-

Villupuram Series.-This is a Secondary Longitudinal Series lying along the parallel of 12° between the meridians of $77^{\circ} 50^{\prime}$ and $79^{\circ} 20^{\prime}$. It emanates from the side Guttirayan (LX)-Karadigutta (LXII) of the Great Arc and, extending throngh 18 triangles, closes on the side Kiliyur (IX)-Mallipat (VII) of the South-East Coast Series.

The detachment employed was under Mr. Abdul Hai, Sub-Assistant Superintendent, assisted by Mr. Gopalachari till the middle of March 1912.

During November 1911, the two base stations on the Great Arc were repaired and five new stations built. Observations were then commenced at Guttirayan H. S. on 21st December, and from this date building and observing went on concurrently till 4th April when observations were completed at Mallipat, closing the secondary triangulation on the side of the South-East Coast Series.

On 9th April Mr. Abdul Hai was ordered to join the Kashmir Detachment and on 14th of the same month the Villupuram Detachment was disbanded.

Madura Serics.-In the middle of March Mr. Gopalachari, who had till then been Mr. Abdul Hai's assistant in the Villupuram Detachment, was ordered to form his building section into a detachment to be named
the Madura Detachment and moving to Madura, commence the building of stations for a secondary series along the parallel of 10° from the Great Arc to the South-East Coast Series. By the end of June, all but the last two stations of the series had been selected and built. The final selection of these two remaining stations will depend on the side of the South-East Coast Series chosen for the secondary triangulation to close upon.

This side of closure has not yet been decided upon. The question of how the secondary work shall join up to the principal series is somewhat difficult of solution, as satisfactorily clear rays are not easy to obtain through the thick belts of palmyra palms which exist, and further consideration on the spot is required belore a final scheme is drawn up.

The detachment returned from the field in the beginning of July 1912.
Bombay Triangulation.—During 1911-12 this Party took up the work of executing a network of points covering the city and island of Bombay, on which to base a large scale detail survey. 125 points have been marked on the ground in a manner which will ensure their permanency and, at the same time, permit of easy reference.

The scheme of work included the connection of these points to the principal triangulation. The most convenient available side of the Bombay Longitudinal series on which to base the network was the secondary ray Bombay, Colāba, S.-Karanja H. S. On this a pentagon with a central station has been constructed, covering the whole of the island and affording bases from which the network may extend.

It had been hoped that by far the greater number of the points of the network could be fixed by triangulation, tall masts suitably guyed being used as signals. Much difticulty has, however, been experienced in obtaining a suitable mast which will permit of erection in the city, and recourse must be bad to traversing to fix some 60 to 70 points.

Mr. Collins and Mr. Wainright, in succession, had charge of the detachment employed on this work from the first week of January till the first week of May. During this time, the main pentagon was connected with the principal triangulation and observations were made from 54 súbsidiary points, the signals being luminous in the main and opaque in most of the subsidiary figures.

The instrument used was an 8 -inch micrometer, (No. 1316 by Messis. Troughton and Simms).

EXTRACTS FROM LETTERS

FROM THE LATE LIEUTENANT H. G. BELL, R.E.
"Bandipur, May 17th 1912.-To-morrow morning early, I start off on my " northward way. Everything is as ready as it can be ; all my londs are made " up and coolies engaged. We are going in two parties, each taking about 120 " coolies. The first pass is open for ponies; of the second I have no certain " news."
" May 21st.-Since leaving Bandipur, I have been through all sorts of " trials and tribulations. I got away from Bandipur in fine weather, and rode "up the zig-zag ascent to Tragbal Bungalow, height about 9,000 feet. There " was still some snow round the bungalow and in the evening it rained. Early " in the morning I got everything packed up and we started off to cross the "'Tragbal pass, 11,700 feet. It is quite an easy pass, but it is a bad place to
" get caught in a storm. It started to snow just as we got over the pass, and " in the valley below it was pouring with rain. I found the bungalow in a " sorry state, only two rooms were habitable; the others and most of the out" houses have been carried away by an avalanche. Luckily it clearel up soon "after we arrived and we were all able to dry ourselves. Next day was fairly " fine and I went down to Gurai valley and then along the Kishenganga valley " to Gurais. . There I had to change my ponies for coolies, so the loads had to " be rearranged."

From Gurais to Burzil, the march was apparently slow and troublesome. The coolies had not get settled down to routine and the distribution and adjustment of loads was not effected without some trouble.
" We reached Burzil about 3 p.m., the last few miles being over the snow. " The bungalow itself was quite surrounded by it. Once more I had to re" arrange the loads and get everything ready for an early start on the morror.
" We all got off before 3 am . and started the ascent of the pass by lantern light.
"Orer the snow, I toiled along after the coolies and got up to the top of the " pass by 8 A.m. just as it began to snow. The descent to Chillum is long but " gradual and we got there by 4 p. m. in pouring rain and snow. At Chillum " I had again to change my coolies for ponies, so I paid off the coolies and " once more made up pony loads. Next morning it was snowing very hard, so " I decided not to march that day and sent the ponies down the valley to get " food and sbelter. Next morning it was beautifully fine but the ponies which " I had ortered did not turn up. A few came in the morning, the rest did not " come till 4 p.m. So I left my assistant there and came on with what ponies " there were. It soon began to snow again and then it got dark. The road " was strewn with boulders that had lately come down the khud, and some were " still falling. However, I went on in practical darkness, running across the " bad places to avoid falling rocks; one only missed me by a few yarls. Several " of the ponies died of exposure, chiefly owing to the carelessness of their owners " who left them in the snow without any covering or food.
" Eventually I reached Godhai bungalow at 9-30 p.m. The majority of " the ponies arrived a short time after.
" I left Godhai at 11 a.m. and got here, (Astor), another 17 miles march " by 5-30 P.m. The scenery along this last march is very grand. In one place, " the road passes through a deep and narrow rocky gorge and from above " it one gets a peep at my old friend Nanga Parbat. To-day I halted to let " my assistants catch me up. They got in in the afternoon. The road in " front is bally broken, so thare is not much chance of getting on " just yet. I don't know what hay become of the other half of my detachment, " which should be two days behind me. I can't find out as the telegraph line " has been broken for three days. The weather has been awful for this time " of the year and has quite upset my plans. I hope to leave here to-morrow or " the diy after, so I ought to be in Gilgit before the end of the inonth."

Bell reached Gilgit on May 28th. Owing to the recent rain, the heat in the Indus valley was not as great as usual and apparently no troubles were met with beyond those incidental to long marchers and bad roids.

Between May 28th and Jone 4th, Bell was occupied in organisiug his detachment for its work in the Kanjut valley. This was no eass matter and seems to have caused a good deal of worry. On June 4th he wrote, "It has been " a great dificulty arranging supplies for my whole party and now my men are

THE HUNZA GORGE BETWEEN GILGIT AND CHALT
" all dissatisfied and giving me a lot of trouble because in a place like this, where
" food is scarce, it is impossible to buy a large quantity at the usual bazaar rate-
"It is getting quite hot here. I shall be glad to get away to a cooler climate." In this same letier he mentions that on the day after his arrival in Gilgit he had been in bed with severe stomachic pains which he put down to bad water whioh, he thought, he must have drunk somewhere.

On June 4th, making an early start, Bell with one of his assistants marched 18 miles to Nomal in the Hunza valley. He seeus to bave been greatly rejoiced by the greenness of this village, well irrigated and cultivated in the midst of a barren forbidding country. On the succeeding days, he marched to Chalt, Hindi, and Baltit, which he reached on the 7th. Of his arrival at Bultit he wrote-" Marched from Hindi to Baltit, the residence of the Mir of " FIunza: quite a pleasant ride through a succession of villages. A few miles out "we were met by the Mir's younger son. On our arrival, we found a tent "pitched for us in the Mir's garden and presently he, his Wazīr and his eldest "son came to welcome us."

On 8th he staycd at Baltit, dismissing his pony transport and re-arranging the loads for coolies.

On 9th June, "though we were up very early, it was $7 \mathrm{~A} . \mathrm{m}$. before we "got all our loads packed on to the coolles and started off, a task made all the " more difficult as we had to do everything through interpreters. The Mir came " to see us off and we started on foot as the made road stops here, and there is " only a track winding up and down the precipices, no road for a nervous travel"ler, as it consists in many places of very kutcha built galleries hanging over "the precipices and a false step means a fall of several hundred feet. This "evening we camped in a flat place by the river, the village of Atābād being in " the hills alone.
"loth. We continued our march to Gulmit, the road being rather worse "than yesterday and the heat on the hillside rather trying. We camped in an " orchard of apricot trees and were much worried by tlies.
"llth. This morning our departure was delayed somewhat by our having " to change some of the coolies. However we only had a short and easy march "to Pasu, a village near a big glacier.
" 12 th. We left Pasu early, and had to cross the Batur glacier which took " us about an hour climbing up and down the masses of dirty black ice, " bestrewn with all sorts of débris. We breakfasted on the glacier and continued " our march to Khaiber, another small village where we met the hero of hundred " fights, a very cheery old man aged about a hundred.
"13th. Io day, we did another easy mareh, crossing the river by quite a "decent bridge and camped at the village of Sost. We had a bad storm in the " afternoon and the dust, got blown into everything. The Mir's brother came "to see me in the afternoon and I had a fairly long talk with him.
"14th. It was raining slightly very early this morning but soon cleared up " and we started off. Soon we had to ford the river, rather a perilous proceeding. "We had two ponies on which several of us got across but the conlies had to wade. "However they all got over safely though they were nearly washed away. The "track was very bad along this march; in places it went along steep cliffs with " very little foothold. In the afternoon we reached Misgar, the last village in "British territory.
" 15th. This morning we sent the main camp on to Murkushi and started " to climb a hill above Misgar with just enough kit for the two of us for one " night. We got up above the snow line by about 3 p.m., and camped there.
"In the evening we both had bad headaches and did not eat much dinner.
" 16 th. It was snowing when we got up but we climbed still higher and " reached one peak only to find another still bigher in front of us. The coolies " had got behind. I had to go back to fetch them. Thus we went on a little " further and came to such steep cliffs that we could not set up there with all " the fresh snow about, so we qave it up and came back to camp; packed up and " came down to Misgar. There we got ponies and rode on here, (Murkushi), " arriving about 5 P.m.; a very strenuous day. We were on the move for 12 " hours with barely a rest."

On 17th. They halted at Murkushi to reassemble their kit and to ration the coolies. On the following day, they marched to Gul Khwaja at the foot of the Mintaka pass in a snow storm which, however, stopped in time to allow of tents being pitched and camp established "in the dry." In the afternoon Bell went out in the hope of securing an ibex head, but without success. On 19th, the party orossed the Mintaka pass. "Again the track was very " bad, and gave no end of trouble. One yak went over backwards and was only " saved from an untimely end by several of us bolding on to his horns till his " load was cut loose. We crossed the Mintaka pass in a snow storm about 12 " noon, leaving British India behind and entering Chinese Turkistan and the " 'Roof of the World.' The descent on this side brought us down into a wide " open valley covered with green grass where lots of yaks were grazing. We " followed the valley down a long way till we reached an encampment where " we were ushered into a 'yart', a round dome-shaped wooden framework " covered with felt, draped with embroidery inside and carpeted with thick " rugs where tea and sweets were brought to us, The Sarakoulis are fine big " men, very cheery and good looking. Clothed in their many wadded coats, " long boots and fur caps they look very picturesque. They certainly are most " hospitable. They keep one ' yart' always ready for guests. Some of our " kit did not arrive till after dark owing to the difficulties of the road and the " bad weather.
" 20th. We stayed in camp to-day as it was very cold and stormy; re" packed our kit and prepared to separate on the morrow. Several headmen " came to see me and I had to give them tea and entertain them."

On 21st Bell moved towards Beyik while his assistant, Mr. McInnes, turned off towards the Karchanai pass. The next day Beyik pass was reached and the two Russian triangulation stations located, the camp being established in a small open valley at the foot of the pass. On 23rd, he had a stiff climb to the eastern survey point in a snow storm. By the time he had reached the summit, however, the weather had cleared and he got a view all round. He remarked that the Pamirs on the far side were much lower than those he had crossed and the mountans quite insignificant.

On 24th, he moved camp down the nullah back to Beyik, going out in the afternoon to select his first station. He also wrote a letter, in French, to the Kussian Survey Officer, whom he thought to be encamped at Kizil Rabat. He learat inter that, though expected, this officer had not yet arrived.

On 25th, he moved his camp into a small nullah close under his first station.

OPAQUE SIGNAL USED BY THE RUSSLAN TRIANGULATION PARTY ON THE TAGHDUMBASH PAMIR

He writes on 27th, -" We had more snow last night, but it cleared up in " the morning and I moved up the nullah north of my camp and climbed up a " long way and pitched my small tent in a very damp and cold spot, the only " more or less flat one available.
" 28 th. Up at sun rise; nocved further up the nullah and got on the "ridge; went along its knife-like edge to a more or less flat place where I "put up a signal station. A fine sunny day but even then my feet got nearly " frozen with the cold. I stayed up there some time and theo came down to my " main camp; a long descent from 17,000 to 12,000 feet. On my arrival, I "found McInnes there. After consultation, we decided to give up the scheme " of the Karchanai pass and try to go round by the Kilik."

On 29th, camp was moved again up the Beyik nullah towards the western Russian point. The weather had improved, for Bell remarks that it seemed "to have changed for the better at last." On July 3rd, he was again at his first station about to commence observing. On this day he was not in camp till 9-30 P.m., for after completing the march, he went out after ovis poli., He secured one head but the stalk had taken him a long way from camp. "By " the time we had cut his head off, it was dark and we lad a long trek back " to camp and an icy cold stream to cross. However I got there by 9-30 p.m. " hungry and weary but elatid and was up by 6 next morning."

On July 4th, Bell commenced observing under difficulties; a high wind was blowing and snow began to fall, and it was not till the next day that he managed to get work at this station finished, moving down afterwards to his main camp.

On July 6th, we "climbed up the J\}ussian west station and found the "Russian signal deep in snow. However with twelve men aud a bucket " and phowrah we cleared away 10 feet of snow all round it and pitched the ob" servatory tent aud made a platform for our tents. In the evening it started to " blow and snow.
" July 7th, I did observations and spent the rest of my time cooking my " food, for when I go up to the stations, I can't take my cook as I have only " twelve coolies to take up my own and my babu's kit, etc." .

On sth, he finished work and moved back to his main camp, going out in the evening after poli again but failing to get a shot.

The next day Bell went over to the Russian Survey camp, where he was received by the Russian Officers, a Colonel, a Captain and a Lieutenant, and entertained in a " yart."

He wrote-" We were very merry and they most hospitable. I had to " write my namc in their pocket books and they in mine. Then we adjourned "to photograph each other and returned for more refreshment. Then they " escorted me back to the pass and we parted the best of friends.
"So now I have been into three empires this season and to the most " northern point the Survey of India has reached."

On 10th and 11th, he prepared the Russian eastern point to receive bis observatory tent, finished observations there and came down to his main oamp. On l1th, he wrote "I am very fit and have quite got my mountain " legs and feel full of work."

From this station, Bell marched back towards the Mintaka pass, to his last oamp at Lup Gaz.

PART IV.-TIDAL OPERATIONS.

No. 16 PARTY.
(Fide Index Map 10.)
By Mr. H. G. Shaw.

Perbonnel. Tmporial Officer.
Major J. M. Burn, R.E., in sharge till 27th Oetolier 1911

> Provincial Odfcers.

Mr. H. G. Shaw, in oharge from 28th Ootober 1911.

Mr. Syed Zille Hasnain.
Lover Subordinato Service.
1 Clerk.
16 Computars.
2 Artificers.
2 Tidal Observatory clerks.

The personnel of the party was as shown in the margin. Two computers died during the year under report, otherwise the health of the members of the party was good.
The recording of the tidal curves by self-registering tide-gauges was continued during the past year at the following ports :-

Aden, Karāchi, Apollo Bandar (Bombay), Prince's Dock (Bombay), Madras, Kidderpore, Rangoon, Moulmein and Port Blair.

The work was carried out under the direction of this department, but the immediate control of the tidal observatories rested with the Port Officers concerned.

In addition to the automatic tidal registrations at the above ports, readings of high and low water were undertaken during daylight on tide-poles at Bhāvnagar and Akyab, with the object of checking the predicted times and heights. Till the end of the year 1910 similar readings were also taken at Chittagong; but they were discontinued from lst January 1911, and in their place the Port Officer of Chittagong supplied to this office diagrams recorded by a small self-registering river gauge. These diagrams, however, could not serve the purpose of checking the predicted times and heights at Chittagong, as readings obtained from them were not satisfactory, chiefly owing to the very small scale on which the tidal curves were registered.

List of Tidal Stations.

The following is a complete list of the ports at which tidal observations hare been carried out from the commencement of tidal operations in 1874 up to the present time. The stations shown in italics are permanent, the others being minor stations where tidal observatories were closed on the completion of the requisite registrations:-

The tidal observatories at Port Blair, Rangoon, Moulmein, Kidderpore and Madras were inspected by Mr. H. G. Shaw, and those at Apollo Bandar (Hombay), Princes' Dock (Bombay), Karāchi and Aden by Mr. Syed Zille Hasnain. The tide-gauges and other instruments at all the observatories were thoroughly overhauled, cleaned and put in perfect working order. The relative levels of the bed-plates of the tide-gauges were also tested with the benchmarks of reference.

Working of the Observatories.

The following account gives details of the working of the several observa-tories:-

Aden.-'The tide-gauge at this observatory has worked well during the past year. There were a few minor interruptions in the tidal registrations owing to the stoppage of the driving clock.

Karächi.-The tide-gauge and auxiliary instruments have worked uninterruptedly during the year under report. At the time of the inspection of this observatory a good deal of mud was found to have accumulated on the outside of the bottom of the cylinder and the communication hole was partly blocked.

The inspecting officer had the mud thoroughly cleared with the assistance of a diver, and free communication between the sea and the cylinder was. restored.

Apollo Bandar (Bombay).-The tide-gauge has worked well throughout the year. There have been no breaks in the tidal registrations.

Prince's Dock (Bombay).-There have been several minor interruptions in the working of the tide-gauge at this observatory, the cause being either the stoppage of the driving clock or the breaking of the pencil wire.

The latter has always been found to be a frequent source of trouble with this tide-gauge.

Madras.-'There have been no interruptions in the registration of the tide at this observatory during the past year. The new sluice fixed in the well last year was found to be in perfect working order at the time of the inspection of this observatory. A little water was discovered to have found its way into the float, which was thoroughly repaired and put in good order again.

Kidderpore.-The tidal registrations at this observatory have been carried out without a break during the past year. This being a riverain port there is a great tendency for mud to collect round the bottom of the cylinder frequently. But arrangements have been made by the Deputy Conservator of the port to have the necessary dredging carried out at short intervals and thus to maintain free communication between the river and cylinder.

Rangoon.-With the exception of a few minor interruptions in the registrations, the tide-gauge and the auxiliary instruments have worked well throughout the year.

Moulmein.-The tide-gauge at this observatory worked well during the past year ; there was a break in the registrations of over eleven days' duration in August 1912. The driving clock stopped early in the morning of 4th August and could not be repaired and restarted before the afternoon of the 5 th idem.

When tidal observations were taken at Moulmein between the years 1880-86, it appeared that the configuration of the land had a remarkable effect on the tides.

It was found that at the wharf where observations were taken, the water, although rising higher at spring tides than at neaps, fell lower at neaps than at springs. The ahove peculiarity of the tides at Moulmein is still noticeable, as shown from the tidal registrations taken since the observatory was re-started in 1909. The new observatory stands practically on the site of the old one.

Port Blair.-The tide gauge and the auxiliary instruments at this observatory have worked well throughout the year. There have benn no breaks in their registrations.

Computations and Reduction of Obsertations.

All the computations pertaining to the season's work have been completed and there are no arrears. The tidal observations for the year 1.911 have been reduced by harmonic analysis and the tabulated values of the tidal constants thus determined are herewith appended.

Tidal Constants.

The following tables give the amplitudes (R) and the epochs (ζ) deduced from the 1911 observations at the various stations; they also give the values of H and κ which are connected with R and ζ in such a way, through the various astronomical quantities involved in the positions of the sun and moon, that if the tidal observations were consistent from year to year, H and κ wo uld come out the same from each year's reductions :-

Aden, 1911.
Short Period Tides.

Long Period TYules.

Karãchi, $^{191 i}$.

Short Period Tides.

Long Period Tides.

| | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Bombay (Apollo Bandak), 1911.
Short Perion Tides.

Jong Period Tider.

| | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Bombay (Pinoe's Dock), 1911.
Short Period Iides.

Long Pariod Tides.

				R	ζ	H	κ
Lunar Monthly	Tide	-	-	-033	$63^{\circ} \cdot 53$	-087	$292^{\circ} 13$
" Fortnightly	"	-	-	$\cdot 043$	1810.84	$\cdot 031$	$30^{\circ} \cdot 96$
Luni-Solar ,	"	-	-	. 029	$337^{\circ} \cdot 99$	$\cdot 030$	$1)^{0.71}$
Solar-Annual	"	-	-	$\cdot 155$	$357^{\circ} 15$	$\cdot 165$	$278^{\circ} \cdot 97$
" Semi-Annual	"	-	-	$\cdot 144$	$14^{\circ} \cdot 60$	$\cdot 144$	214.24

Madras, 1911.
Short Period Tides.

Long Period Tides.

Kidderpore, 1911.
Short Period Tides.

Long Period Tides.

| | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Rangoon, 1911.
Short Period Tides.

Long Period Tides.

| | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Moulmein, 1911.
Short Period Tides.

Long Period Tides.

Port Blatr, 1911.

Short Period Tides.

Long Period Tides.

| | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Data forwarded to England.

The following data were supplied to the Director, National Physical Laboratory, Teddington, England :-
(a) Values of the tidal constants for 40 ports for the tide tables for 1915, ready for use for the tide predicting machine.
(b) Actual values during 1910 of every high and low water measured in duplicate from the tidal diagrams at 9 stations, and of tidepole observations taken during daylight at 3 stations.
(c) Comparisons of the above with predicted values for 1910, the' errors being tabulated in such form as to be of use in improving the predictions.

Errors in Predictions.

The percentage and the amount of errors in the predicted times and heights of high and low water for the year 1911, as given in the tide tables, have been determined by comparison with the actual values obtained from tidal registrations at the 9 stations now working, and from tide-pole readings at two other stations, where regular tidal resistrations have been stopped. The errors are tabulated in the five tables herewith appended.
A.

Statement showing the percentage and the amount of the errors in the predicted times of high water at the various Tidal Stations for the year 1911.

Stations.	Automatic or Tide-pole observatious.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { comparisons } \\ \text { betweon } \\ \text { actunl and } \\ \text { predicted } \\ \text { values. } \end{gathered}$	$\begin{gathered} \text { Errors } \\ \text { of } \\ 5 \text { minutes } \\ \text { nnd } \\ \text { under. } \end{gathered}$	Errors uver 5 minntes and ander 15 minuter.	Errors over 15 minates and under 20 minutes.	Errors over 20 minutes and under 30 minntes.	$\begin{gathered} \text { Errors } \\ \text { over } \\ 30 \text { minates. } \end{gathered}$
			Per cent.	Por cent.	Per cent.	Per cent.	Per cent.
Aden	Auto.	669	45	42	6	4	3
Karn̄chi . . .	Auto.	704	40	45	8	6	1
Bhîvnagar . . .	T. P.	365	70	30	0	0	0
(Apollo Banclar .	Auto.	705	40	43	8	6	3
(Prince's Dock .	Auto.	686	34	43	10	9	4
Madras . . .	Auto.	692	41	43	9	5	2
Kidderpore . . .	Auto.	706	32	40	12	10	f
Akyab . . .	T. P.	808	97	3	0	0	0
Rangoon . . .	Auto.	705	30	34	14	14	8
Moulmein	Auto.	695	24	36	12	16	12
Port blair	Auto.	705	34	51	10	4	1

B.

Statement showing the percentage and the amount of the errors in the predicted times of low water at the various Tilal Stations for the year 1911.

Stations.	Antomatio or Tide-pole observations.	Number of oomparisons between aotual and predicted values.	Errors of 5 minntes and under.	Errors over 5 minutes and ander 15 minates.	Erroreover 15 minutes and under 20 minutes.	Errors over 20 minutes and under 30 minntes.	$\begin{gathered} \text { Errora } \\ \text { over } \\ \text { 30 minates. } \end{gathered}$
			Per cent.	Per cent.	Per cent.	l'er cent.	Per cent.
Aden . . .	Auto.	669	44	40	8	5	3
Karāchi	Auto.	705	36	45	8	8	3
Bhāvogar	T. P.	365	69	31	0	0	0
\{ Apollo Bandar .	Anto.	705	38	45	8	6	3
Bombey \{ Prince's Dook .	Auto.	681	41	41	11	4	3
Madras . . .	Auto.	694	44	44	6	4	2
Kidderpore . .	Auto.	705	23	35	12	17	13
Akyab	T. P.	363	98	2	0	0	0
Rangoon . . .	Aato.	705	24	31	12	19	14
Moulmein	Aato.	696	13	27	12	18	30
Port Blair	Auto.	705	42	46	7	4	1

C.

Statement showing the percentage and the amount of the errors in the predicted heights of high water at the various Tidal Stations for the year 1911.

D.

Statement showing the percentage and the amount of the errors in the predicted heights of low water at the various Tidal Stations for the year 1911.

Stations.	Antomatic or Tide-pole observations.	Number of comparisons between actael and predicted valnes.	$\begin{gathered} \text { Mean } \\ \text { range } \\ \text { nt } \\ \text { springe, } \\ \text { is feet. } \end{gathered}$	Errora of 4 incher and nonder.	Errors over 4 inches and under 8 inchee.	Errore over 8 inohes and nuder 12 ivches.	Errora over 12 inches.
				Per cent.	Per cent.	Per cent.	Per cent.
Aden . . .	Auto.	669	$\cdot 7$	93	7	0	0
Karâohi . . .	Auto.	705	$9 \cdot 3$	81	17	2	0
Bharzagar	T. P.	365	$31 \cdot 4$	67	30	3	0
(Apollo Bandar	Auto.	705	13.9	76	21	3	0
Bombsy $\{$ Prince's Dock .	Auto.	681	139	73	24.	3	0
Madras	Auto.	694	3.5	85	15	0	0
Kidderpore . .	Auto.	705	11.7	47	26	12	15
Akyab . . .	T. P.	363	$8 \cdot 3$	88	11	1	0
Rangoon . .	Auto.	705	16.4	32	28	21	19
Moulmein . .	Auto.	696	127	37	27	18	18
Port Elair	Auto.	705	6.6	98	2	0	0

E.

Table of average errors in the predicted times and heights of high and low water at the several Tidal Stations for the year 1911.

The foregoing statements for the year 1911 may be thus summarised :Percentage of time predictions within 15 minutes of actuals.

Percentage of height predictions within 8 inches of actuals.

Percentage of height predictions within one-tenth of mean range at springs.

						High water.	Low water.
						Per cent.	Per cent.
$\underset{\text { stations. }}{\text { Open coast }}\left\{\begin{array}{l} 6 \\ \text { at which predictions were tested by S. R. tide gauge } \\ 2 \end{array}, \quad, \quad, \quad\right. \text {, tide pole }$						97	98
						100	100
Riverain	3	"	"	"	S. R. tide gauge	90	90

Tide tables.

The ide tables for the year 1913 have been received from England and distributed to the various officers concerned.

The tide tables for the year 1914 are now being published in England, and the data for the preparation of the tide tables for 1915 were despatched from this office to England in March 1912.

The amount realized on the sale of the tide tables during the year ending September 1912 is Rs. 2,097-4-6.

Comparison of the Predictions at Riverain Stations.
The predictions for the riverain stations for the year 1911 were compared with those for the previous year and the results are briefly summarised as follows :-

The predictions for 1911 at Kidderpore are on the whole better for high and low water times and heights.
At Rangoon and Moulmein, respectively, the predictions for times and heights are about the same for high water, but slightly worse for low water.
The greatest difference between the actual and predicted heights of low water for 1911 was as follows :-

Kidderpore	3^{\prime}	on 25th September 1911, actuals being highor.
Rangoon	$2^{\prime \prime} 9^{\prime \prime}$	on 23rd November 1911, actuals being lower.
Moulmein	3^{\prime}	on 24th July 1911, actual being higher.

PART V.-LEVELLING.

No. 17 PARTY.

(Vide Index Map 10.)
By Libutinant-Colonel G. P. Lbnor-Conynghay, R.E.
During the past year three Detachments were engaged on levelling operintions, their strength being as follows : -

Personnel.
Imperial Officers.
Lientenant-Colonel G. P. Lenor-Conyngham, R.E., in charge up to March 20th, 1912.

Lieutenant E. H. Cardew, R.E., in charge from
Jnoe sth, 1912, to September 11th, 1912.
Captain V. R. Cotter, I.A., in charge frow September 12th, 1912.

Provincial Officers.
Mr. Syed Zille Hasnain, in charge from March 2 let to June 3rd, 1912
Mr. D. H. Luxa.
Mr. O. N. Pusbong.
Mr. T. F. Kitchen.
Mr. A. M. Telāti.
Mr. O. D. Jachson.
Mr. Jiya Lāl.
Mr. N. Chuckerbutty.
Upper Subordinate Service.
Mr. Karūna Kūmar Das.
Lover Subordinate Servier.
10 Recorders.

No. 1 Detachment.

lst Leveller	Mr. D. H. Luxa.
2nd ""	Mr. Jiya Läl.
Extra,"	Mr. K. K. Das.
4 Recorders.	

No. 2 Detachment.

lat Leveller	Mr. O. N. Pushong.
2nd Levellers	Mr. T. F. Kitchen and
	Mr. N. Chuckerbutty.

3 Recorders.

No. 3 Detachment.

1st Leveller	Mr. A. M. Talāti.
2nd ", Mr. O. D. Jackson.	

No. 1 Levelling Detachment.

The following programme of work was allotted to the detachment:-
(1) Check-levelling the line Khushāb-Shahpur.
(ㄴ) Continuing the line Khushāb-Shahpur along the high road to Sargodha, thence along the railway line as far as Mithalak railway station, and then along the main road via Pindi Bhattiau, Khāngãh Dogran, Shekhupura and Shahdara to Lahore.
(3) Levelling from Sargodha along the railway line as far as Makbdum-pur-Pahoran railway station via Jhang and Shorkot Road railway stations and thence along the main road to Multàn viá Kabirwala and Kádipur Rau.
(4) Levelling at Delhi in connection with the selection of a site for the new capital.

No. 2 Levelling Detachment.

The following programme of work was allotted to the detachment:-
(1) Levelling from Dumpep viá Karimganj and Akhaura to Comilla.
(2) Levelling from Karīinganj to Silchār.
(3) Levelling from Akhaura to Brahmanbaria.

No. 3 Levelling Detachment.

The following programme of work was allotled to the detaclment:-
(1) Levelling from Minbu to Salin by road, with branch lines along the banks of the Salin Choung.
(2) Levelling from Prome to Rangoon along the Irrawaddy via Myanaung. Henzida and Maubin.

The Lines of Levelling.

The Line Shähpur-Lahore.-This line was levelled by No. 1 Detachment. It closes the cirouit Shāhpur-Lahore-Rāwalpindi-Khushāb-Shāhpur, all the lines of which have been levelled within the last 6 or 7 years. The length of the circuit is 447 miles and the closing error $0 \cdot 142$ of a foot as shown below :-

In deriving the above circuit error the differences in height between Rāwalpindi-Khushāb, Khushāb-Shāhpur and Shāhpur-Lahore have been derived from values shown in the line-forms of these lines, while for that between Lahore and Rāwalpindi the orthometric difference as shown in G. T. S. Volume XIX B, has been used.

The Line Sargodha-Multān. - The line from Sargodha to Multān would have closed two circuits, but before this line closed at Multān the detachment was ordered by wire to proceed inmediately to Delli in order to carry on the levelling that was required there in connection with the selection of a site for the new capital. The closing of the Sargodba-Multān line has therefore been postponed till next season.

Levelliny at Delhi.-The levelling at Delhi was carried out in compliance with instructions conveyed in letter No. 1720, dated 8th March 1912, from the surveyor Gencral of India to the Superintendent of the Trigonometrical

Survey. The principal object of this levelling was to fix as many heights as possible over the ground in the vicinity of Delhi, which was being surveyed in connection with the work for the new capital, in order to facilitate the

Extea Personsei. at Delif.
Levellers.
Mr. Karīna Kūmar Das.
Manshi Nabidad Kban.
Planc-tablers.
Mr. Ram Singh, Rai Sahib.
Mr. Jugal lihari Lal. Babu Kunj Beliari Lal. Soldier Survegor Chanan Khan.
1 recorder and 20 menials. contouring of the ground at vertical intervals of 5 feet. No. 1 Detachment was strengthened by the addition of two more levellers, 4 plane-tablers, 1 recorder and 20 menials as shown in the margin. The work was carried out under the personal supervision and direction of Mr . Syed Zille Hasnain, Officer in charge No. 17 Party, but the actual charge of the detachment remained in the hands of Mr. D. H. Luxa.

Mr. T. K. J. Ward, C.I.E., M.V.O., the Superintending Engineer, on special duty at Delhi, and Lieutenant A. A. Chase, R.E., Officer in charge of the Delhi Survey Detachment, were consulted regarding the scope of the levelling required and the best method of carrying it out. The following was the plan of operations adopted:-
(i) As the contoured maps of the country around Delhi were required very urgently and within the shortest possible time, double levelling was abandoned and single levelling resorted to.
(ii) Main circuits of levels were run over the principal roads and carttracks dividing the area into suitable blocks, fixing permanent bench-marks at distances of about $\frac{1}{2}$ a mile apart.
(iii) After closing the main circuits, cross lines of levels were run in such a manner that the whole area was covered with spiritlevelled heights at about 500 feet apart, the positions of these heights whether on permanent bench-marks or pegs were plotted on the four-inch map by the plane-tabler attached to each leveller, as soon as the heights of the points had been determinerl.
In conformity with the above plan, levelling was commenced over the ground immediately to the south and south-west of Delhi, as this area was considered most important and the contoured maps of it were required first. Subsequently levelling was extended in all directions and was carried out wherever spirit-levelled heights were required by the Delli Survey Detachment for purposes of contouring ; or by the Superintending Engineer, for the special requirements of the new capital.

The total outturn at Delhi amounted to 233 miles of single levelling in the course of which the heights of 90 permanent bench-marks, 33 canal benchmarks and $1,85 \%$ temporary points were determined. In the last group were included 240 points on the tops or upper surfaces of water gauges, mile and furlong stones, bridges, wells and floors or pavements; 12 high flood level marks; 31 water level pegs along the west bank of the Jumna River, extending over a length of 12 miles; and 1,570 pegs.

The work at Delhi was commenced on the 29th March and completed on the 14th May 1912.

The levelling at Delhi has served a very useful purpose in linking together the heights of the 3 canal systems, viz. :- (i) Western Jumna Canal, (ii) Eastern Jumna Canal and (iii) the Agra Canal. A number of bench-marks of all the three systems were connected by levelling and the mean
differences between the Great Trigonometrical Survey and the Canal heights were found as follows :-

The Canal heights in every case were higher than the G. T. Survey heights.

Although the levelling done at Delhi was single Jevelling, yet the principal precautions ordinarily observed in levelling of precision were adhered to. The departures from the estahlished practice were that the staves were not guyed, and that the same staff was not always placed on every point connected ; before starting work, however, care was taken that every leveller used a pair of staves with practically accordant zeros. The work was divided into a series of circuits and sub-circuits and was so arranged that each section commenced from and closed on a point whose height had been previously determined, so that it was impossible for any gross error to creep into the work without boing detected.

Traces showing all the levelling done by the detachment at Delhi and its vicinity were prepared and supplied to the Superintending Engineer before the detachment returned to recess quarters. On these traces, the positions of all points, both permanent and temporary, whose heights had been determined were shown with their reference numbers and approximate heights.

On return to recess quarters the corrections for unit length of staves and for the dispersion of the closing errors of circuits and sub-circuits were determined. The closing error of the main circuit which enclosed the whole of the levelling done at Delhi amounted to $0 \cdot 114$ of a foot, the length of circuit being 62.3 miles. A schedule containing a list of all points connected at Delhi with the corrected heights of all bench-marks, water level pegs, high flood level marks, borings and gauges were forwarded to the Superintending Engineer on special duty at Delhi.

The Line Dumpep-Comilla-Was carried on by No. 2 Detachment and was an entirely new line.

The Line Karimganj-Silchior--Levelled by No. 2 Detachment is a new line.

The Line Akhaura-Brahmanbaria-Is a new line and was levelled by No. 2 Detachment.

The levelling circuit in which this line is included will be closed next field season if possible.

The Line Minbu-Salirb-Was levelled by No. 3 Detachment and is a new line. This was carried along the road between the two places with branch lines of about 10 miles length along the Salin-Choung.

The Line Prome-Rangoon-This line is new and was carried along the Irrawaddy embankment viâ Myanaung, Henzāda and Maubin. The work was done by No. 3 Detachment. It was at first proposed to carry the line along the railway cmbankment and bench-marks were built for the purpose and are still in existence. The question of whether they shall be destroyed as misleading is under consideration. Huring the next field season it is expected that the levelling circuit Rangoon-Toungoo-Meiktila-Prome-Henzäda-Rangoon will be completed.

Destruction of Bench-marks.-During the past year out of 86 old bench marks inspected, 10 were found destroyed and 1 could not be found.

Zinc plate Bench-marks.-A new type of bench-mark was experimentally made use of. This consisted of a zinc plate with the letters | $\boldsymbol{a}, \mathrm{T}_{\mathrm{T}} \mathrm{m}, \mathrm{s}$. |
| :---: |
| $\mathrm{D} . \mathrm{m}$. | inscribed on it, firmly nailed to a flat surface cut on the root of a tree. The results of our future check-levelling will prove whether this type of bench-mark is sufficiently reliable to be resorted to when no suitable permanent structures are available.

Aluminium Staves.-A new pattern of aluminium staff has been designed, and will be experimentally tried during the next field season.

Outturn of Detachments.-The combined tabular statements of the 3 detachments show the outturn of the party. The single levelling carried out in Delhi has been included. The tabular statements of detachments have also been shown separately under Table I.

Old G. T. Survey Bench-marks.-Table II shows the discrepancies between the new and old values of height of bench-marks which are common to the lines of the new and previous operations.

The noticeable discrepancies found in the check-levelling of Nos. 1 and 2 Detachments are not very important except in one case and are as follows:-
(a) The bench-mark on masonry block on milestone 6 from Shahpur on
the line between Khushāb and Shalpur was found to have sunk 0.04 of a foot. This was attributed to its being situated very near the river bank.
(b) The lench-mark on Badāmi Bāgh railway station was found to have sunk 0.05 of a foot. The surface of the stone appeared much worn, which would account for a portion of the subsidence.
(c) The new work between Lahore and Shahdara has proved that the embedded bench-mark, No. $\frac{80}{411}$, at Lahore railway station has sunk by 0.09 of a foot. The height of this bench-mark was first determined by the original levelling in 1866-67. The bench-mark was then made use of as a starting point for the new line to Peshawar carried out in 1905.06. In the same year a standard bench-mark was connected at Lahore Cantonment, but certain bench-marks in its neighbourhood were used for check-levelling, so the standard bench-mark was not connected with bench-mark No. $\frac{00}{41}$ on Lahore railway station.
In season 1909-10, discrepancies in levelling between bench-mark No. $\frac{60}{411}$ and Lahore Cantonment led us to believe that bench-mark No. $\frac{80}{411}$ at Lahore railway station had sunk by 0.09 of a foot, between seasons $1866-67$ and 190506. 'This evidence however was not considered conclusive. In view of the additional evidence obtained during this season we may now take the subsidence as finally proved.

As regards the check-levelling of No. 3 Detachment in Burma, the results were not so satisfactory. A reference to Table II will show that 6 bench-marks have sunk by more than 05 of a foot and that in two of these the subsidence is over 10 of a foot.

Among these six bench-marks, two are on the Dala Pagöda. The whole of this building appears to have sunk appreciably. The Shwé Dagōn Pagõda showed no signs of subsidence and the bench-mark on it may be regarded as an extremely reliable one.

It is satisfactory to note that of the 2 standard bench-marks in Rangoon, the one in the Cantonment gardens has remained unaltered in height, and the
one at the flag staff appears to have sunk by a very small quantity only, viz. :--019 of a foot.

In arriving at the above conclusion, it should be noted that the sub. sidences are noted relative to Graham Smith's Bench-mark, which is yearly levelled to by No. 16 Parts, in connection with tidal operations and has invariably been found extremely reliable.

Standard Bench-marks.-A statement showing the standard bench-marks constructed and connected, is appended (Table VII).
TABLE I.
Tabular Statement of Ou'turn of work, season 1911-12.

TABLE I (contd.) - No. 1 Levelling Detachaent.
Tabular Slatement of Outturn of work, season 1911-12.

TABLE I (contd.)-No. 2 Levilling Deragement.
Tabular Statement of Outturn of work, season 1911-12.

TABle I (concld.) - No. 3 Leveling Detacement.
7abular Statement of Outturn of work, season 1911-12.

TABLE II.

Tabular statement of difference of height between original and check-levelling.

Bonoh-marks of the original levelling thet were conneoted for oheoklevelling.	Distance from starting benchmark.	Obgrkthd hetaht above (+) OR BELOW (-) eTAETING BEINCH-MAREAB determined by		Difference in height (Cheoklevelling Original). The sign + denotes that the hoight was greater and the sign - less in 1911-12 than when originally levelled.	
		Original levelling.	Cheoklevelling, 1911.12.		Remaria,

Check-levelling between Khushāb and Shähpur, part of line 55E (Khushāb-Lahore), 1911-12.
G. T. S. At Khushab Dāk Bangalow
B. M.
G.T.S. In the Central passage, O Khushăb By. Station.
B. M.
G. T. S. On coping of platform,

O Khashăb Ry. Station
B. M.
G. T.S. At Kabalee gate, Khushrbb

0
B. M.
G. T. S. At Lahoree gate, ditto B. M.
G. T. S. On masonry blook at M. S. 6 \square from Shāhpur.
G.T.S. At Lahoree gate, Shāhpar ${ }^{\mathbf{O}}$ City.
B. M.
G. T. S. At Munsif's Court, Shãhpar O Civil Station.
B. M.
(. T. S. At District Board's Office, B. M.
G. T. S. At Churoh, Shāhpar Civil
B. M.
G. T. S. At Katohéri, Shābpur Civil 0 Station.
B. M.
G. T. S. At Shīhpar Dāk Bungalow
B. M.

Check-levelling between Lahove and Shahtara at Lahore and betweon Lahore and Lahore Cantonment, part of main line No. 56, 1905-06.
Check-levciling between Lahore and Shahdara.
G. T. S. At Lahore Ry. Station
B. $\stackrel{\times}{M}$.
G. T. S. At coping of platform at O Badēmi Bagh Railway
B. M. Station.
G. T. S. At S. abntment of Ravi 0 bridge
G.T.S. At N. ubatment of Rēvi B. M.

0.0	0.000	0.000	0.000			
1.7	-8.375	-8.426	-0.051			
2.9	+0.844	+0.866	-10.02 .2			
3.3	+0.824	$+(1.832$	+1.000	$	$	Surface of stone very
:---:						
muto worn.						

TABLE II-contd.
Tabular statement of difference of height between original and check-levelling.

Bench-marks of the original levelling that were conneoted for oheoklevelling.	Distance from atarting benchmark.	Obgebved heiogt above (+) OR BELOW (-) Btart. ing benchemabe ab determined by		Differenoe inheight (Cheoklevelling-Original).The eigatdonotes thatthe height wasgreater andthe aign-leasin 1911-12than whenoriginallylevelled.	Hemabeg.
		Original levelling.	Check. levelling, 1911-12.		
	Miles.	Feet.	Feet.	Feet	
G. T. S. At (old) Shahdara Railway \square Station. B. M.	5.0	-13.796	-13.778	+0.018	
G. T. S. At bridge No. 10, 3 chs: B. M . S. E. of T. P. No. $\frac{341}{3}$	$5 \cdot 3$	$-12 \cdot 126$	$-12 \cdot 128$	-0.002	
G. T.S. At Drain No. 3, between $\begin{array}{cc}0 \\ B . & \text { M. P. Nos. } \frac{341}{12} \\ \text { and } & \frac{341}{13}\end{array}$	$5 \cdot 7$	-14:167	-14'139	+0.028	
G.T.S. At bridge near T. P. B. M. No. ${ }_{2}^{34,2}$	$7 \cdot 1$	-8.974	-8.960	$+0.014$	

Check-levelling at Lahore.
G. T. S. At Lahore Ry. Station B. M.
G. T. S. At W. end of No. 2 plat-
0
form, Lahore Ry. Station. B. M.
G. T. S. At centre of No. 2 platform, ${ }_{\mathrm{B}}^{\mathrm{O}}$ Lahore Ry. Station.
B. M.
G. T. S. At E. end of No 2 platform, O Lahore Ry. Station.
B. M.
G. T. S. Embedded at N.-W. Railway \square Institute, Lahore.
G. T. S. B. M. Embedded at N.-W. A Railway Central Otfices, Lahore.
$\wedge \quad \begin{gathered}\text { On rteps at N.-W. } \\ \text { Railway Central } \\ \text { Offices, Lahore. }\end{gathered}$
G. T. S. On sill under N. porch of the B. M. Cathedral, iahore. 0
G. 'I'. S. On sill under W. poroh of B. M. the Cathedral, Lahore. 0
G. T. S. At Chief Court, Lahore O.
H.
G. T. S. At S. side of General Pust 0 Office, Lahore.
B. M
G. T. S. At F. side of General Post O Office, Linhore.
A. M.

0.0	$0 \cdot 000$	$0 \cdot 000$	0.000	
0.0	$+2612$	$+2 \cdot 619$	$+0.007$	
$0 \cdot 1$	$+2570$	$+2.687$	-0.003	
$0 \cdot 1$	$+2.583$	+2.567	-0.016	
0.4	-1.734	-1.737	-0.003	
$1 \cdot 0$	$-9 \cdot 628$	-9.639	-0.011	
$1 \cdot 0$	$-5 \cdot 636$	-5.644	-0.008	
24	-2.854	-2.844	$+0.010$	
2.4	-2915	-2.907	+0.008	
$2 \cdot 7$	--7.438	-7.427	$+0.011$	
2-8	$-15 \cdot 626$	-15.627	-0.002	
$2 \cdot 8$	-15.691	-15.710	-0.010	

TABLE II—contd.

Tabular slalement of difference of height between original and check-levelling.
 B. M.

Chcok-levelling between Lahove and Lahore Cantonment.
G. T. S. Embedded at Lahore Rail\times way Station.
B. M.
G. T. S. Embedded at North-Weatern - Railway General Stores,
B. M. Lahore.
G. T.' S. Embedded at Shalamar Road [over bridge.
B. M.
G. T. S. At Drain near Running Shed 0 and Engine Reveraing B. M. Table.
G. T. S. At bridge No. 213, $\frac{2}{4}$ mile 0 bouth-east of Shalamar B. M. Road over bridge.
G. T. S. On coping of platform, 0 Lahore Cantonment, East B. M. Railway Station. *
G. T. S.
Standard Bench Mark Lahore
Eantonment.

+ On step under ateeple tower Church
of England, Lahore Cantonment.
+ On sill of doorway under steeple
tower Church of England, Lahore

Cantonment.
Q.T. 日. Embelited at Church of + England, Lahore CantonS. M. ment.

0.0	$0 \cdot 000$	$0 \cdot 000$	0.000	
0.7	$-2 \cdot 602$	-2.598	$+0.004$	
$1 \cdot 0$	$-2 \cdot 144$	$--2 \cdot 156$	-0.012	
1.2	-9.742	-9.731	$+10011$	
1.3 3.0	+0.553 +7.510	+0.639 +7.606	+0.086 +0.090	Connected by No. 3 Levelling Detachment on Line LahoreDharmkot, season 190\%-10.
$5 \cdot 7$	$+3.050$	$+3.134$	+0.084	
5.8	$+1.614$	+1700	$+0.086$	On first examinstion these 6 benchmarles from the
5.8	+2863	+2.939	+0.086	check-leveling ap* peared to have altered their values, but this is really not the case, as the embeaded B. M. at the Lahore
5.9	-0.334	-0.249	+0.085	Railway Station has been proved to have sunk by 0.09 of a foot.

Check-levelling at Minbu: Line 88 (Thazi to Magwe),

O On rock near D. C.'s BangaG. T. S. low, Minbu. B. M.	$0 \cdot 0$	$(10$	0%	0%	In good condition.
G. T. S. Fmbedded at P. W. B. A. D. 1903 M. Bangalow, Minbu.	$0 \cdot 3$	-74.531	$-74 \cdot 488$	+0.043	Ditto.
U. T. S. At Culvert, 4 chs. N. W. of O. Taukshabin Inspection B. M. Bungalow.	$2 \cdot 1$	$-92 \cdot 466$	-92 547	-0.081	The briok on which 1he circle was cut was found chipped at one cormer.

TABLE II-contd.
Tabular statement of difference of height between original and check-levelling.

Check-levelling at Rangoon: Main Line 87 (Elephant Point to Myitkyina).

Graham Smith's Bench-mark, Rangoon.	0.0	00	00	0.0	In good condition.
$\begin{aligned} & \text { G. T.S. } 1 \text { at Dala } \quad \text { a } \\ & \text { B. M. } \end{aligned}$	$11 \cdot 3$	-0.158	--0.243	--0.085	The pagōla appeara to have sunk.
G. T. S. 2 at do. 0 B. M.	$11 \cdot 3$	+0.158	+0,034	-0.124	
B. \downarrow M. of Mile \mathbf{O} of RangoonTwante Road.	$11 \cdot 1$	-3.500	-3.582	-0.062	The mile post has most probibly sunk.
G. T. S. At Level-crossing No. 1 of 0 wharf siding. B. M.	$3 \cdot 5$	+10.853	$+10.843$	-0010	In good condition.
B. $\oplus \mathbf{M}$. On W. sile of Lower Kemmendine Ruad.	$3 \cdot 3$	+8.826	$+8.784$	-0.042	Mark intact, but the plaster had cracked off in places, the pillar was repaired.
G. T. S. At Brilge near Level Cross- $\text { B. M. ing No. } 3 \text {. }$	$2 \cdot 8$	+2.201	+2094	-0.107	The mark appears to be intact, but the surrounding plaster had all fallen away. was repaired.
1 About 1 chain N. of Supply B. M. and 'Tranaport Corpa wharf, 168. Rangoon.	$1 \cdot 3$	$+1 \cdot 136$	+1.083	-0.053	In good condition.
$\stackrel{0}{0} \quad$ About 1 chanin N. of Supply Rangoon.	$1 \cdot 3$	+1/163	+1.095	-0.058	Ditto.
* Near gatewny of Crisp Street B. M. jetty, Rangoon. 169.	1.2	+0.808	$+0.762$	-0.046	Ditto.
G. 'P. S. C At rubbishbin, near whart 0 godown No. 16 . B. M.	$1 \cdot 1$	+0.920	+0.900	-0.020	Ditto.
G. T. S.At General Post Office, 0 Rangoon. b. M.	$0 \cdot 6$	+1.576	$+0.569$	-0.c07	Ditto.
$\left.\begin{array}{c} \left.\begin{array}{c} \text { Standard } \\ \text { Bench-Mark: } \\ \text { for } \\ \text { Rangoon } \end{array}\right\} \text { At Flag-Staff, } \end{array}\right\} \begin{gathered} \text { Ran- } \\ \text { goon. } \end{gathered}$	$0 \cdot 4$	$+3.633$	$+3 \cdot 14$	-0.019	Ditto.
B. O. M. At N. W. corner of Brooking Street, wharf godown.	$0 \cdot 1$	+1.107	+1.099	-0.008	Ditto.
B. O. M. At S. W. corner of Brooking Street, wharf hodown.	$0 \cdot 1$	+1.172	+1/158	-0.014	Dittn.
B. $\stackrel{A}{\mathrm{M}}$. B. M. At Municipal Office, Raggoon 31.	08	+1995	+1.967	-0.028	Ditto.
G. T. 8. at Sūlē Pagōda, Rangoon . $\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} . \mathrm{M} . \end{aligned}$	08	$+8.472$	+ $9 \cdot 458$	-0.014	Ditto.

TABLE II-corcld.
Tabular statement of difference of height letween original and check-levelling.

Benoh-marks of the original levelling that were connected for Cheok-levelling. \qquad \qquad Deloription.	Distanco from starting benohmark.	Observed hbiget abote (+) OR BELON (-) BTARTlng bench-mark DETERMINTD BY		Differenoe in height (Cheok levolling Original). The sign + denotes that the height was greater and the signleas in 1911-12 then it wes when original ly levelled.	Remaris.
		Origiual levelling.	Cheok-level. ling.		
G. T. S. At Railway Audit Offices, Rangoon.	Miles.	Feet. $+13.879$	Feet. $+13 \cdot 863$	Feet. -0.016	Half the blook has been broken off probably in digging for garden. It wes found in same condition in 1909-10.
A South of Entrance gate to B. M. Presbyterian Church. 66.	$1 \cdot 4$	+25:369	$+25 \cdot 357$	-0.012	In good condition.
\qquad	$2 \cdot 8$	$+92603$	$+92 \cdot 610$	+0.007	Ditto.
3 tandard Bench-Mark at Cantonment gardens.	$3 \cdot 0$	$+93 \cdot 003$	$+93.003$	0.000	Ditto.

Check-levelling at Dumpep.
G.T.S. At rock near Dumpep D. B. B. M.
G. T. S. O. B. M. At do,
G. T. S. At rock between M. S. Nos. O 17 and 18 from Shillong. B. M.

0.0	0.000	$0 \cdot 000$...
$0 \cdot 13$	-11.415	-11.410	+0.005
027	$+9 \cdot 156$	$+9.155$	-0.001

List of Great Trigonometrical Survey stations connected by spirit levelling in season 1911-18.

No. of Detaohment.	Name of station.	Height in feet abova mean bia-levil.		$\begin{gathered} \text { Differenoe } \\ \text { in } \\ \text { height from } \\ \text { Trisngule } \\ \text { tion } \\ \text { in feet. } \end{gathered}$	Remarie.
		$\begin{gathered} \text { By } \\ \text { spirit level- } \\ \text { ling. } \end{gathered}$	$\underset{\substack{\text { Trianguls. } \\ \text { tion. }}}{\text { By }}$		
No. 1 Levelling Detaohment.	Hūjan Tower Station	646.232	655	+ 8.768	Ground floor mark-stonf.
	Fatti " "	$667 \cdot 360$	676	+8.640	Ditto ditto.
	Sñngla Hill Station	824.531	837	+ $12 \cdot 469$	\bigcirc On bed rock.
	Asrūr Tower Station	729•170	737	$+7.830$	Mark-stone about 3 feet below top surface of pillar.

Eastern Frontier Series Section 23° to 26°.

Cachär Branch of the Eastern Frontier Series.

table IV. - No. 1 Levelling Detagmbnt.

Kesult of comparison of staves, season 1911-12—Singbe faces.

The results were obtained by comparing the staves with portable 10 -foot standard steel bars during the field season. The correction for difference in unit of pair of staves has been applied to the observed heights in order to obtain the absolute heights :

Place and date of comparison.	Number of biaff.				Remarig.
	05.	02.	01.	08.	
	Feet.	Feet.	Feet.	Feet.	
Khushäb, 10th November 1911.	+0.00252	+0.00119	- -0.00228	-000241	Light scattered clouds, cool breeze.
Shāhpur, 18th November 1911.	+0.00126	+0.00102	-0.00237	-0.00310	Rain once since last comparison, light scattered clouds, cool breeze.
Sargodha, 26 th November 1911.	-0.00059	-0.00000	-0.00449	-0.00590	Clear and dry.
Jakain, 5th December 1911	+900012	+0.0:018	-0.00398	-0.00554	Light scattered clouds and cool breeze.
Findi Blinttian, 14th December 1911.	+0.00047	$+0.00003$	-000385	-0.01650	Rain once since last comparison, clouñ.
Khängāh Dogran, 23rd Vecember 1911 .	-0.00021	-0.00044	-0.00516	-0.00704	Sanòstorm once, light scattered clouds, cool nad diy.
Shekhapūra, 31st December 1911.	-0.00067	-0.00023	-0.00454	-0.00653	Mornings clondy, afternoons clear, cool and dry.
Shahdara, 8th Jaduary 1912	-0.00048	- 0.00052	-0.00471	-0.00603	Drizzled twice, foggy twice, cloudy.
Sargodhe, 15th Junaars 1912	+0.00079	+0.00031	-0.00389	-000491	Rain once, mornings mists and cloudy.
Silunmali, 24th Jenuary 1912	$+17 \cdot 00060$	$+0 \cdot 0005$	-0.00382	-0.00447	Rain, light scattered cloude, cool.
Shalyewāna, 30th January 1 H12.	-0.01005	-000035	-0.00414	-0.00:56	IIrizzled twice, cloudy mornings, weather very variable.
Jhang Maghiana, 7th Febraary 1912.	-0.00020	-0.000 8	-0.00404	--0.00551	Clear and cool mornings, weather very variable.
Ruatam Sargann, 14th February 1912.	-0.00018	$+0.00003$	-0.00485	-0.00592	Drizzled ouce, next day cloudy, otherwife olear and cool.
Darkhadi, 22nd February 1912.	$+0.00000$	+0.00022	-0.00491	-0.00581	Cloudy, once drizzled, once otherwise dust, haze and cool brueze.
Abdul Hakim, lst March 1912.	-0.00110	-0.00075	-0.00563	-0.00726	Light scittered clouds, sudden gusts of cool breeze, clear and dry.
Makhdūmpur Pahoran, 13th March 1!12.	-0.00188	-0.00162	-0.00649	-0.00816	Clear and dry, audden gusts of cool breeze, afternoons duaty dust-storm and rain once.
Kidipu: Ran, 21st March 1912	-0.00301	-0.0)268	-0.00731	-0.00942	Clear and dry afternoons, light scattered cloudn.
Delhi, lst A ${ }_{\text {j,ril }} 1012$.	-0.00216	-0.00252	-0.00773	-0.00985	Rain thrice, scattered chuads and strong guste of cool breeze.

TABLE IV-(contif.)-No. 2 Levelling Detachment.
Result of comparison of staves, season 1911-12.

TABLE IV-(concld.)-No. 3 Levbllina Detagment.
Result of comparison of slaves, season 1911-12.

TABLE V.
Differences between levellors.

TABLE VI.
Statement showing levels and staves used in the field.

No. of detachment.	Name of levellers.	No. of levels.	Nos. of staves.	Remabie.
$\underset{\text { Detachment. }}{\text { No. } 1 \text { Levelling }}\{$	1st Mr. D. H. Luxa	6727	05,02	
	2nd, Jiya Lāl	6726	01,03	
No. 2 Levelling Detachment.	1st „O. N. Pushong	6724	20A, 20B	
	2nd " T. F. Kitchen	6784	20A, 20B	
	2nd , N. Chuckerbutty	2697	16A, 16B	
$\underset{\text { Detachment. }}{\text { No. } 3 \text { Levelling }}\{$	1st , A. M. Talāti	3	19A, 19B	
	2nd , O. D. Jackson	2626	$24 \mathrm{~A}, 24 \mathrm{~B}$	

TABLE VII.

Alphabetical List of Staudurll Bench-Marks.

Alphabetical List of Standard Bench-Marks -contd.

PART VI.-MAGNETIC SURVEY.

No. 18 PaRTY.
(Fide Index Map 11.)
By Captan R. H. Thomas, R.e.

$$
\begin{array}{lc}
\begin{array}{c}
\text { Pessonvel. } \\
\text { Imperial Offcer. }
\end{array} & \begin{array}{c}
\text { The present report deals with the } \\
\text { Cnptain R. H. Thomas, R. E., in oharge. } \\
\text { work of the magnetic survey in 1911-. }
\end{array} \\
\text { Prorincial officers. } & 12 ; \text { it consists of :- }
\end{array}
$$

III. Tables of results, comprising preliminary values of the magnetic. elements at field and repeat stations, in 1910-11 and the " quiet day" tabulations derived from the survey base stations.
I.-FIELD OPERATIONS AND RECESS WORK IN 1911-12.

1. Work of the field detachments.-The field season opened on October 23rd, 1911 and closed at the end of April 1912. The health of the party was satisfactory. Two field detachments each under a Provincial officer were employed on detail survey in Central India and Hyderābäd State where the Deccan trap area exhibits considerable abnormalities; repeat stations in the vicinity of these areas were also visited.

During the season the values of the magnetic elements were determined at 78 new stations of the detail survey and 74 repeat stations including those visited by the officer in charge.

During the previous season four feld detachments were employed. The reduction of the number of detachments this year is due to the strength of the party having been diminished by one Provincial officer, while another is being employed at head-quarters in the reduction of the declination data of the survey.
2. Field work of the officer in charge. -The officer in charge, (Captain Thomas, R.E.,) inspected the four survey base stations, and carried out comparative observations at each and at Alibāg magnetic observatory; in addition 37 repeat stations were reoccupied.
3. Work during recess.-The computation of the field work and the reduction and tabulation of the "quiet day" results from the base station records for 1911 have been completed.

From January 1912 the measurement of all days has been commenced, as proposed in last year's report ; the hourly measurements are made and checked by the observatory staffs, while a further check is provided by independent measurements of the ordinates for 5 quiet days each mouth, which are made, as in previons years, by the computing section at Dehra Dūn.

Good progress has been made with the reduction of the declination data of the survey, although owing to the unforeseen absences of the Provincial officer in charge of this section, who

[^3] was required to hold charge of Toungoo observatory during a leave vacancy, this work could not be begun till late in

January 1912. The correction for diurnal variation has been practically completed, the amount of correction being deduced by means of a simplified empirical formula devised by Mr. J. deGraaff Hunter, m.a.; with this formula the correction is based upon the results of one, two, three or frur base stations according to the number available at the date of any given field observation. The declination base lines are now being examined in conjunction with the comparative observations with field instruments to determine whether any correction in the direction of smoothing the curve of observed values is justified, after which the corrections for disturbance and secular change, (for reduction to the selected epoch), will be applied.

It may be noted that the four base stations agree in indicating that secular change in declination is increasing.

Corrections for disturbance have been tentatively applied to all observations at repeat and re-observed stations to obtain approximate values of secular cbange ; it was found that while the permanently marked stations in all cases and the unmarked stations in undisturbed localities gave consistent results repeat observations at unmarked stations in regions of disturbance were quite unreliable, small errors in re-siting the instrument introducing varying " station errors ".
4. Instrumental differences in B. F.-The officer in charge has been mainly occupied during the recess season in continuing the investigation of the instrumental differences in $\mathrm{H} . \mathrm{F}$.

In last year's report it was observed that the observed discrepancies were for the most part to be attributed to "personal error" in the vibration observations, and further, that, provided the changes in the constants liable to alter, viz.:-the moment of inertia and the distribution constants were accurately known, there seerned no reason for the instrumental differences to vary at all.

Changes in the distribution constants were dealt with in last year's report where it was shown that changes had occurred in the standard and one field instrument only.

It remained to determine the probable changes in the moment of inertia and the probable personal errors for all the instruments for the period 19021910, during which the vibration experiments had been made only by the eye and ear method.

As regards the moment of inertia, there existed some uncertainty as to the initial values for the field instruments, owing to an unexplained change in the length of the inertia bar, when the latter was remeasured in 1904: the moment of inertia of the standard, however, had been measured throughout with another bar and the changes from time to timo were known with considerable accuracy; there was a steady fall in the value equivalent to a reduction of the observed valuc of H. F. by 32γ in 1912.

Reliable values of the moment of inertia of the field magnets are arailable since 1906 when a new standard bar was obtained; the values slow slight decreases since that year, in each case considerably less than in the standard. Now since the diminution in value in the standard was sensibly uniform over the whole period 1902-12 there was every reason to suppose that the smaller changes in the field magnets would also be uniform and values for 1902 were obtained therefore by an extension of the curves for 1906-12.

These values were further cheoked by comparing the differences of the magnetograph base line deduced from the observed values with each instru-
ment at Dehra Dūnat the time of comparative observation in 1902 and 1910, when the ohronograph was used for the vibration experiments and the resulting values could be considered to be free from "personal error."

The orgiinally accepted values of $\pi^{2} \mathbb{K}$ had been used in the computations in both comparisons and if other sources of error could be assumed to have been eliminated, it was clear that any variation in the differences would be a measure of the relative ohanges of $\pi^{2} \mathrm{~K}$.

The following are the differences of base line found for the period 1902-10:-

This shows that the change of $\pi^{2} \mathrm{~K}$ in for example No. 6 instrument during the period 1902-10 has been equivalent to 20γ less than the fall in the standard instrument and knowing the actaal fall in the standard to be equivalent to 27γ, the resulting change in the value of $\pi^{2} \mathrm{~K}$ in No. 6 for the same period is equivalent to 7γ. Further the values with the standard corrected for change in $\pi^{2} \mathrm{~K}$ are in $1902 \cdot 33234$ c.g.s. and in $1910 \cdot 33032$ c.g.s., a difference of 202γ : the change of 7γ in 6 should be applied, to give the same difference; it is known that the correction in 1910 is -2γ and consequently the 1902 value requires to be corrected by $+5 \gamma$ on account of $\pi^{2} \mathrm{~K}$. The curve for 1906-12 extended to 1902 gives a correction of $+5 \gamma$: the assumption of a uniform decrease in $\pi^{2} \mathrm{~K}$ seems therefore reasonable.

Changes in the moment of inertia having been determined the question of "personal error" remained to be dealt with. Owing to frequent changes of moment in some of the field magnets, this question has proved more complex than was anticipated and though at the time of writing the investigation is practically completed, time does not admit of the inclusion of the results in this report.

The instrumental differences have been found to be as follows, after inclusion of the Q term :-
$17-1-11 \gamma$
$2-83 \gamma$
$3-42 \gamma$
$4-15 \gamma$
$5-44 \gamma$
$6-30 \gamma$
$10-40 \gamma$
5. Programme for 1911-12.-During the ensuing field season three detachments will be employed in the field, one under the officer in charge and two under Provincial officers.

The officer in charge will inspect the survey observatories, observe at repeat stations and carry out a general magnetic survey of Ceylon.

One detachment will carry on the detailed survey in Hyderābād and Berär, the third will be occupied throughout the season in visiting repeat stations.
6. Results published in this report.-Tables showing the approximate values (uncorrected) of the magnetic elements at the field and repeat stations in 1911-12 are appended, with an index chart showing the progress of the maguetic survey to date.

The tabulations of the "quiet day" results at the four observatories are published for 1911.

II.-WORKING OF THE OBSERVATORIES.

A.-Drhra Dūn Observatory.

1. General Remarks on working.-The observatory remained in oharge of magnetic observer Shri Dhar throughout the year.

The magnetographs were dismantled at the end of May 1912 when the repairs to the underground ronm referred to in last year's report were carried out ; the instruments were re-erected'on the 9th of June 1912.

It is satisfactory to note that the room remained quite dry during the past rainy season.

The opportunity was taken to thoroughly clean the instruments, during which the quartz fibre suspension of the H. F. instrument was unfortunately broken; a new fibre was mounted and the temperature coefficient redetermined in October 1912. The resulting value was $\pm 12.6 \gamma$ for $\mp 1^{\circ} \mathrm{C}$, which agrees with the previous value.

The ohavges in the Π. F. during the temperature experiment were determined by two magnetometers, deflection observations being made at $2 \mu \cdot 5 \mathrm{cms}$. every $7 \frac{1}{2}$ minutes alternately with each instrument.

The temperature coefficient of the V. F. magnetograph was determined at the same time and the value obtained, viz.: $\pm 5^{\circ} 2$ for $\mp 1^{\circ} \mathrm{F}$, agrees with those obtained in March 1907.

The definition of the curves has been greatly improved by fitting stops of smaller aperture than those previously used.
2. Mean values of $\boldsymbol{H} . F$. and declination constants.--The table below gives the mean monthly values of magnetic collimation, the distribation coeffcients P_{1} and P_{2} and the mean values of m_{\circ} used in the computation of the results with the survey standard for 1911.

In May 1911 there was an apparent fall in the observed value of m_{0} which could only be accepted on the hypothesis of instrumental change; on further investigation in July 1911 it was found that the apparent fall was due to an error in the thermometer used in the vibration experiment, and another thermometer was therefore substituted.

From the "Chronographic" comparisons this thermoneter error seems to have developed between February 1910 and May 1911, and it would therefore appear desirable to have two thermometers fitted to a magnetometer, at any rate for observatory work.

Mean values of the constants of the Magnetometer No. 17 in 1911.

Mean values of the constants of the Magnetometer No. 17 in 1911.

3. Mean base line values. -The table below gives the m'an values of the H. F. and declination base lines, actually used to obtain the values of H. F. etc., yiven in the tables attached to this report.

These values of H. F. and V. F. should be regarded as preliminary only, as they will be corrected subsequently for "personal error" and the \mathbf{Q} term, they have been obtained in the same way as those of previous years, with which they are comparable.

The V. F. base lines are not given, as irregular changes are to be expected in these instruments which require frequent cleaning and readjustment.

Base line values of Magnetographs in 1911.

Base line values of Magnetographs in 1911.

4. Mean scale values and temperature ranges.-The mean scale values for 1911, for an ordinate of 0.04 inches, were as follows: H. F. $4 \cdot 12 \gamma$, V. F. $4 \cdot 1 \gamma$ to $4^{\prime} 7 \gamma$, Declination $1^{\prime} \cdot 03$.

The mean temperature for the year was $27^{\circ} 2 \mathrm{C}$, the maximum and minimum monthly values being $27^{\circ} 3 \mathrm{C}$ and $27^{\circ} 1 \mathrm{C}$; the temperature of reduc- ${ }^{\circ}$ tion is $27^{\circ} \mathrm{C}$.
5. Mean monthly values and secular change, 1910-11.-The following table gives the mean monthly values of the magnetic elements for 1910-11 and the secular changes during that period deduced therefrom :-

Secular changes at Dehra Dūn in 1910-11.

Мохтв.	Hodizontal Fobce $\cdot 3: 000$ C. U. S. +			$\begin{gathered} \text { Declination } \\ \text { E. } 2^{\circ}+ \end{gathered}$			$\begin{gathered} \mathrm{D}_{\text {IP }} \\ \mathrm{N} .49^{\circ}+ \end{gathered}$			Varical Fonce -31000 C. G. S. +		
	1910.	1011.	Secular change.	1010.	1011.	Becular charge.	1010.	1811.	Secular ohange.	1910.	1011.	Secula change
	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$,	,	,	,	,	,	γ	γ	γ
Janmary .	263	240	-23	33.4	30.5	-2.0	52.0	58.9	+6. 0	972	1,078	-106
Fédrabity	261	238	-23	33.4	30.2	-3.2	52.2	69.8	+7.6	974	1,094	+120
March	260	248	-20	339	$30 \cdot 9$	-3.0	52.4	50.7	+73	882	1,100	+1/8
April	258	241	-15	$32 \cdot 2$	30.0	-22	63.1	607	+76	080	1,114	+128
May	270	249	-27	32.2	29.5	-2.7	63.5	01.4	+ $7 \cdot 9$	1,000	1,130	+124
Jane	264	247	-17	31.8	$20 \cdot 3$	-2.8	54.3	020	$+7.7$	1,015	1,143	+128
Juiy	288	263	-28	31.3	28.0	-29	54.8	02.4	+7.6	1,030	1,147	+117
Anguat .	259	241	-12	31.4	$28 \cdot 8$	-2.6	65.6	62:8	+79	1,020	1,184	+125
September	255	295	-20	$31 \cdot 1$	28.4	-27	56.0	02.7	+ 8.7	1,030	1,148	+117
Oclober	241	228	-12	$31 \cdot 3$	$28 \cdot 3$	-3.0	87.7	09.0	+ 0.2	1,056	1,163	+10\%
Norember	243	231	-12	30.0	28.0	-2.9	50.1	64.6	+0.8	1,087	1,176	+110
Decembor	248	222	-26	30.4	276	$-2 \cdot 8$	68.1	05'9	+7'2	1,071	1,181	+110
Meana	257	238	-10	310	20.2	-2.7	54'8	62.0	+72	1,010	1,130	+117

B.-Bamrackpore Observatory.

1. General Remarks on working.-Magnetic Observer K. N. Mukerij remained in charge throughout the year except for two monlls during which he was on sick leave when Abdul Majid officiated.

The magnetographs worked satisfactorily.
Sanction has been accorded to the provision of suitable quarters for the recorder permanenily allotted to the observatory, since the measurement of "all days" was undertaken.
2. Mean values of constants.-The following table gives the monthly mean values of magnetic collimation, the distribution co-efficients of P_{1} and P_{2} and the moment m_{0} of magnetometer No. 20 in 1911.

Mean values of the constants of the Maguetometer No. 20 in 1911.

3. Mean values of base lines.-The table below gives the mean monthly base lines of the H. F. and Declination instruments actually used : those of the V. F. are not shown :-

Abstract of Base Line value of Magnetographs in 1911.

Montie, 1911.		Drgeination.			Horizontal Force.		
			Acceptad value of Base line.	Remarig.	Mean value of Brase line.	Acoepted value of Brese line.	Remaris.
		- ,	- ,				
January	- -	. $-0 \quad: 4.5$	$-0: 4.5$		-37039	-37039	
February	- -	. $0: 4.5$	$0: 4.5$		$\cdot 37049$	-37044	
March	- -	. $0 \quad: 4,4$	$0: 4.4$		-37059	'37049	
April .	- -	- $0: 4.2$	$0 \quad: 42$		$\cdot 37044$	'37054	
May	- •	$0 \quad: 4 \cdot 2$	$0: 4.2$		-37066	37059	
June .		$0: 4.2$	$0 \quad: 4.2$		$\cdot 37063$	-37063	
July	- •	0 0 4] $]$	$0: 41$		$\cdot 37063$	-371663	
Ȧugust	- -	$0: 4.0$	$0: 4.0$		$\cdot 37080$	'37084	
September	- •	$0: 40$	$0: 4.0$		-37072	- 37065	
October		$!0: 42$	$0: 42$		-37056	$\cdot 37065$	
November	- -	$0: 4 \cdot 1$	$0: 4 \cdot 1$		-37069	$\cdot 37065$	
December		$0: 3 \cdot 8$	$0: 3.9$		'37065	$\cdot 37085$	

4. Mean scale values and temperature range.-The mean scale values for the year for an ordinate of 0.04 inch were: for H. F. $4 \cdot 86 \gamma$, V. F. $4 \cdot 6 \gamma$, Declination 1'08.

The mean temperature for the year was $32^{\circ} \cdot 3 \mathrm{C}$ with maximum and minimum values of $33^{\circ} 1 \mathrm{C}$ and $31^{\circ} 9 \mathrm{C}$; the temperature of reduction is $31^{\circ} \mathrm{C}$.
5. Mean monthly values and secular change.-The following table gives the mean monthly values of the magnetic elements in 1910-11 with the secular change for that period.

The values of B. F. and V. F. are preliminary only : they will be subsequently corrected for "personal error ", Q term and difference from the Survey standard.

Secular changes at Barrackpore in 1910-11.

C.-Tolingoo Observatony.

1. General Remarks on worling. -Mr . R. P. Ray was in charge of the observatory until 20th January 191" when he was relieved by Surveyor K. K. Dutta who was in charge for the remainder of the year.

The officer in charge inspected the observatory early in December 1911 and readjusted the V. F. and Declination magnetographs. The temperature coefficient of the V. F. instrument was redetermined and found to be 干 29γ per干 $1^{\circ} \mathrm{F}$; the value previously determined in July 1911 was ± 0. $4 \boldsymbol{\gamma}$ per
$\mp 1^{\circ} \mathrm{F}$; this change is accounted for by a slight displacement of the temperature compensation bar during the readjustment.

The H. F. and Declination magnetographs worked well throughout, the latter being readjusted only hecause owing to the effect of secular change the curve was approaching the edge of the sensitized paper.

The V. F. magnetograph gave frequent trouble owing to the balance being somewhat unstable; Lieutenant Morshead remedied this defect in the previous year by lowering the centre of gravity at the expense of the scale value which was raised to 16.5γ; this was reduced in July 1911 to 5.0γ, raised again by the observer at the end of September to $11 \cdot 3 \gamma$ and reduced in December 1911 to 48γ.

Changes of zero have again given trouble during the present year, but as the similar instruments at the other observatories give little trouble with scale values of about 5γ it is hoped that the necessary stability will be obtained by shifting the knife edge of the magnet a little further from the edge of the agate plane upon which it rests (of Narrative Report, 1906-07).
2. Mean values of Declination and H. F. constants.-The table below gives the mean monthly observed values of magnetic collimation, observed and accepted values of the distribution constants P_{1} and P_{a} and the magnetic moment m_{0}; the accepted values are those used in computing the monthly mean values.

It will be noticed that the monthly values of magnetic collimation show considerabie fluctuations for which no cause can be at present assigned with any certainty.

The observed values of \mathbf{m}_{0} show a rapid fall as during previous jears.
Mean values of the Constants of the Magnetometer No. 19 in 1911.

3. Mean Base Line values.-The following table gives the observed and accepted Base Lines of the H. F. and Declination magnetographs.

The observed declination base lines show a variation which though smaller than in 1909 and $1 ? 10$ is still larger than is to be expected; the comparisons with No. 10 magnetometer in 1911 and 1912 show that the change in base line was negligible before the readjustment in December 1911 and the base line for the whole period has for this reason been taken as the same as in December 1910.

It seems probable that the defects in the wooden magnetometer box, referred to in last year's report, have not yet been effectually remedied and the instrument will be carefully examined during the next inspection of the observatory.

The difference between the accepted and observed Base Lines in H. F. is due partly to the smoothing of the curve of m_{o} and partly to a correction of -19γ to reduce to the magnet No. 19 which was used in the earlier years of the observatory.

Buse Line values of Magnetographs in 1911.

4. Mean scale values and temperature range. -The mean soale values in 1910 are as follows :-

The mean temperature for the year was $89^{\circ} 1 \mathrm{~F}$. with maximum and uinimum monthly values of $89^{\circ} 3 \mathrm{C}$ and $88^{\circ} .9 \mathrm{C}$; the temperature of reduction is $89^{\circ} \mathrm{F}$.
5. Secular chanye, 1910-11.-'The table below gives the mean monthly values of the magnetic elements for 1910 and 1911 and the secular change during this period:-

Secular changes at Toungoo in 1910-11.

- Mean observed value of Dip.
D. - Kodaikīal Obgervatory.

1. General Remarks on working.-S. S. Ramaswami Aiyangar was in charge throughout the survey year 1910-11, except for three months when he was reliered by K. K. Dutta.

Thanks are due to the Director, Solar Physics Observatory, for his cordial assistance in all matters connected with the magnetic rork ; since May of the present year, he has kindly placed his electric-chronograph at the disposal of the magnetic observer for periodical determinations of "personal crror."

The officer in charge inspected the observatory in March 1012 when all the magnetographs were readjusted; in the H.F. and Declination instruments the curve had approached the edge of the sensitized paper owing to secular changes.
2. H. F. and Declination constants.-'The table below gives the monthly mean values of the magnetic collimation, the distribution constants \mathbf{P}_{1} and $\mathbf{P}_{\mathbf{2}}$. and the accepted values of the magnetic moment m_{0} : the accepted values are those used in computing the monthly mean values :-

Mean values of the constants of the Magnetumeter No. 16 in 1911.

3. Mean Base Line Values.- The table below gives the mean monthly observed and accepted values of the H. F. and Declination base lines : the accepted values have been used in computing the monthly mean values.

In last year's report it was noted that the apparent changes of m_{0} during 1910 had to be disregarded as they were not substantiated by the resulting monthly mean values of H.F. and the base line was computed with the value of m_{0} found at the beginning of the year. For the same reason the observed values of m_{0} in 1911 have been rejected; from the comparisons made with magnetometer No. 10 in 1910-11 and 1911-12 the Base Line value is shown to have fallen by 13γ during twelve months and the accepted monthly base lines given below have therefore been derived from that for December 1910 by applying a gradual fall of $l \gamma$ per month.

The H. F. base lines can then only be considered provisional and liable to subsequent correction.

Abstract of Base Line valucs of Magnetographs in 1911.

4. Mean scale values and temperature range.-The mean scale values for 1911 are as follows:-
$\left.\begin{array}{lc}\text { H. F. } \\ \text { V. F. } \quad\left\{\begin{array}{l}6.14 \gamma \\ 5 \cdot 4 \gamma \\ \text { to } \\ 5.9 \gamma\end{array}\right. \\ \text { Declination } 1^{\prime} .03\end{array}\right\}$ for an ordinate of 0.04 inch.

The mean temperature was $18^{\circ} 3 \mathrm{C}$ with maximum and minimum monthly values of $18^{\circ} \cdot 7 \mathrm{C}$ and $17^{\circ} .8 \mathrm{C}$; the temperature of reduction is $19^{\circ} \mathrm{C}$.
5. Secular change, 1910-11.-The following table gives the mean monthly values of the magnetic elements for 1910 and 1911 with the secular change deduced during the interval :-

Secular changes at Kodaikānal in 1910-11.

III. - TABLES OF RESULTS.

Index to tableg.
A. Mean values of the magnetic elements at the observatories for 1911.
B. Classification of ourves and dates of maguetic disturbances in 1911.
C. Tables of resulta at Debra Dūn.
D. " " Barraokpore.
E. " " Toangoo.
F. , , Kodaikānal.

For each observatory the following tables are given :-

1. Hourly means, (corrected for temperature), of Declination, H. F., V. F. and Inclination from 5 selected quiet days per month.
\therefore. Diurnal inequality of each element deduced from 1 .
G. Preliminary values of the magnetic elements at field and repeat stations in 1911-12.
A.-Itean values of the magnetic elements at observatories in 1911.

Observatory.	Latitade and Longitude.	Dip.	Declination.	H. F.	V. F.
	-	- ,	- ,	C. G. S.	C. G. S.
Debra Dūn	$\left\{\begin{array}{cccc}30 & 19 & 19 & \mathrm{~N} \\ 7 \times & 3 & 19 & \mathrm{E}\end{array}\right\}$	N $44 \quad 2 \cdot 0$	E $2 \quad 29 \cdot 2$	33238	-32136
Barrackpore	$\left\{\begin{array}{llll}22 & 46 & 29 & \mathrm{~N} \\ 88 & 21 & 39 & \mathrm{E}\end{array}\right\}$	N 3045.5	E $\quad 0 \quad 49 \cdot 9$	-37397	-22220
Toungoo	$\left\{\begin{array}{llrl}1 \mathrm{~S} & 55 & 45 & \mathrm{~N} \\ 96 & 27 & 3 & \mathrm{E}\end{array}\right\}$	N 23330	E $\quad 0 \quad 19 \cdot 3$	-38853	16532
KodaikĖnal	$\left\{\begin{array}{llll}10 & 13 & 50 & \mathrm{~N} \\ 77 & 27 & 46 & \mathrm{E}\end{array}\right\}$	N 352.0	W 100.2	$\cdot 37515$	02536

20% 等
8x 易品

C.-Tables of results at Dehra Dīn.
Hourly Mean, of the Declination as determined at Dehra Dün from the selected quiet days in 1911.

Hours.	M d d	1	2	3	4	5	0	7		9	10	11	Nuon.	13	14	15	16	17	18	19		${ }^{21}$	22	${ }^{29}$	Mid.	Mcan
E. $2^{5}+$																										
Montha.																										
Janaary	3×8	306	$30 \cdot 6$	$30 \cdot 2$	$29 \cdot 9$	29.7	$29 \cdot 7$	29.7	30.0	$31 \cdot 1$	51.0	31.4	30.5	30:	$30 \cdot 3$	30.1	$30 \cdot 4$	30\%	30.6	$30 \cdot 6$	30.8	30.7	$30 \cdot 8$	$30 \cdot 8$	$30 \cdot 9$	30\%
Febraary	307	30.7	30.1	37.1	30.1	30.0	30.3	28.7	29.8	303	30.4	30.1	30.0	29.9	30.2	30.4	$30 \cdot 2$	30.2	$30 \cdot 4$	30.5	30.6	$30 \cdot 6$	30.5	30.7	$3 \% 6$	$30 \cdot 2$
reh	30.1	30.1	$3 \% 1$	30.0	29.9	29.8	297	$29 \cdot 9$	$31 \cdot 3$	323	32.7	332	307	28.4	$20 \cdot 0$	29.5	30.0	30.1	301	30.1	30.0	$30 \cdot 0$	300	$30 \cdot 0$	30.0	$30 \cdot 3$
October	$28 \cdot 5$	29.5	$28 \cdot 5$	28.3	28.2	28.1	28.1	28.7	292	$28 \cdot 3$	28.8	27.5	27.2	27.0	27.6	$28 \cdot 4$	28.6	28.3	28.3	28.2	28.2	$28 \cdot 2$	$28 \cdot 3$	$28 \cdot 4$	$28 \cdot 3$	$28 \cdot 3$
Novembar	28.1	28.1	28.1	$27 \cdot 9$	27.7	27.7	27.7	28.0	28.5	28	27	27.3	27.0	27.4	$28 \cdot 1$	$28 \cdot 3$	28.2	28.1	28.2	28.1	28.0	28.1	28.2	28.1	28	28.0
गeeember	27.6	27.7	276	27.5	27.4	27.3	37.3	27.5	280	$28 \cdot 2$	27.9	27.0	28.8	27.3	291	$28 \cdot 3$	$23 \cdot 1$	276	27.7	27.6	27.6	27.5	27.5	$27 \cdot 6$	$27 \cdot 6$	$27 \cdot 6$
Means	$29 \cdot 3$	29.3	29.2	29.0	289	28.8	28.8	$28 \cdot 9$	29.5	$28 \cdot 8$	$29 \cdot 9$	29.3	28.7	28.5	$28 \cdot 9$	29.2	29.3	:29.1	29.2	29.2	29.2	29.2	29.2	29.3	29.3	$29 \cdot 2$

April	30.2	30.4	30.2	${ }^{30} 3 \quad 302$	30	3,4	312	${ }^{32 \cdot 1}$	${ }^{32 \cdot 1}$	308	29.3	28.4	${ }^{27} 9$	28.3	29.	$29 \cdot 6$		30.1		29.				1	30.0
Mas	299	299	$3 \% 0$	$\begin{array}{lll}30.0 & 30.1\end{array}$	30		31.9	32.1	31.1	29.7	28.1	27.0	26	27.2	28.2	29.0	29.4	29.7	29.4	29.3	29.4	29.6	7	29.8	29.5
Jane	29.7	298	29.9	$30 \cdot 1 \quad 30$	30.4	31.4	32.0	317	$30 \cdot 6$	29.1	27.4	26.9	26.7	27.0	776	28.4	$28 \cdot 9$	$29 \cdot 1$	29.1	29.	29.1	293	$29 \cdot 4$	29.7	29.3
July	29.4	29.6	29.6	296' 297	29.7	30.5	31.3	31.3	30.7	296	28.0	27.2	$28 \cdot 8$	26.7	7.3	27.9	28.5	$28 \cdot 8$	286	$28 \cdot 5$	28.6	28.7	290	29.3	29.0
Angust	29.1	29.1	29.2	29.429	29.5	30.4	31.5	31.8	31.0	29.5	27.	$26 \cdot 8$	29.0	26.2	27.2	28.0	$28 \cdot 6$	$28 \cdot 6$	$28 \cdot 4$	$28 \cdot 5$	28.	286	$28 \cdot 7$	28.8	$28 \cdot 8$
Sortember	28.5	295	28\%	28.6:285	28.5	29.0	30.1	$30 \cdot 9$	10.7	$29 \cdot 1$	27.5	26.4	$25 \cdot 9$	$26 \cdot 1$	27%	28.2	$28 \cdot 6$	28.5	$28 \cdot 3$	28.2	283	$28 \cdot 4$	28.4	296	
Meat								31.7		296	28.0	27.	$28 \cdot$	$26 \cdot 9$	278	28.5	29.0	29.1	29.0	$28 \cdot 9$		1	29.2		

Diurnal Inequality of the Deecination at Dehra Dūn as deduced from the preceding Table,

\#ours.	Mid.	1	2	3	;	5	6	7	8 !	! 9	10	11 ,	, Noon.	13	14	15	16	17	18	19	26	21	${ }^{2}$	${ }^{23}$	Mid.
Winter.																									
$\begin{gathered} 1911 \\ \text { Months. } \end{gathered}$,	,									
Janaary	+0.3	+0.1	+0.1	-0.3	-0.6	-0.8	-0.8	-0.8	-0.5	$+0.6$	+1.4	+0.9	0	-0.3	-1.2	-0.4	-0.1	0	$+0.1$	+0.1	+0.3	+0:2	+0.3	+0.3	+0.4
February	+0.5	+05	-0.1	-0.1	-0.1	-0.2	-0.2	-0.5	-0.4	+0.2	'+02	-0.1	-0.2	2 -0.3	0	$+0.2$	0	0	$+0.2$	$+0.3$	+0.4	+0.4	+0.3	+0.5	+0.4
Marcb	-0.2	-0.2	-02	-0.3	-0.4	-0.5	-0.6	-0.4	+10)	$+2 \cdot 0$	+24	+19	+0.4	-0.9	-1.3	-1,8	-14	-0.2	- -2	-02	-0.3	-0.3	-0.3	-0.3	-03
October	+0.2	+0.2	+0.2	0	-0.1	-0.2	-0.2	+0.4	+0.9	$+1.0$	+0.5	-0.8	-11	-13	-0.7	+0.1	+0.3	0	0	-0.1	-0.1	-0.1	0	+0.1	0
November	$+6.1$	$+0.1$	$+0.1$	-r 1	-0.3	-0.3	-0.3	0	+0.5	+0.4	-0.1	-0.7	-10	:-0.6	+0.1	+0.3	+02	+0.1	$+0.2$	+0.1	0	$+0.1$	+0.2	+0.1	$+0.1$
December	0	$+0 \cdot 1$	0	-0.1	-0.2	-0.3	-0.3	-0.1	+0.4	$+0.6$	$+0.3$	-0.6	-0.8	- -0.3	+0.5	+0.7	+0.5	0	+0.1	0	0	-0.1	-0.1	0	0
Means	+0.1	+0.1	0	-0.2	-0.3	-0.4	${ }^{-0.4}$	-0.3	+0:3	+0.7	+0.7	+ $0 \cdot 1$	-0.5	-0.7	-0:3	0	+0.1	-0.1	0	n	0	0	0	+0.1	$+0.1$
Sammer.																									
Arril	$+0.2$	+0.4	+0.2	+0.3	+02	+0.2	$+0.4$	$+1 \%$	+211	+3.1	$+0.8$	-0.7		-2.1	-1.7	-1.0	-0.4	+0.1	+ $0 \cdot 1$	0	-0.1	-0.1	$+\cdots 1$	+0.3	+0.1
${ }_{\text {May }}$	- 04	+0.4	+0.3	+0.	+ $0 \cdot 6$	+0.6	+1:	+2.4	+2.8	+1.6	$+0.2$	-1.4	-25	5-2日	-2.3	-13	-0.5	-0.1	+0.2	- ${ }^{1} 1$	-0.2	-0.1	+0.1	+0.2	$+0.3$
June	+0.t	+0.5	+0.6	+0.8	+0.8	+1.1	+2.1	+2.7	+2.4	+1.3		$\left.\right\|^{-19}$	-24	$4-2 \cdot 8$	-2.3	-1.7	-0.9	-0.4	-0.2	-0.2	-0.3	-0.2	0	+0.1	+0.4
July	+0.4	+0.6	+0.6	+06	+0.7	$+0.7$	+1.5	+2.3	$+2 \cdot 3$	+17	+0.6	-1.0	-1.8	$8-2.4$	-2.3	-1.7	-1.1	-0.	-0.2	-0.4	-0.5	-0	-0.3	0	+0.3
August	+0.3	+0.3	+0.4	+0.6	+0.6	+0.7	+1.6	$+2 \cdot 7$	+311	+2.2	$+0.7$	-1.0	-20	-2.8	-2.6	-1.6	-0.8	-0.2	-0.2	-0.4	-0.3		-0.2	-0.1	0
September	+0.1	+0.1	$+0.3$	$+0.1$	+0.1	+ 01	+0.6	+17	+2.5	$+2.3$		-0.9	-2.9	-2.5	$-2 \cdot 3$	-1.2	-0.2	+0.2	+0.1	-0.1	-0.2	-0.1	0	0	$+0.2$
Means	+0:3	4.04	$+0.1$	+0.5	+0.5	+0.5	$+1 \cdot 3$	+2.1	+2.5	+1.8	$+0.4$	-1.2	-2.1	$1-2 \cdot 6$	$-2 \cdot 3$	-1.4	-0.7	-0.2	-0.1	-0.2	-0.3	$1{ }^{0.2}$	-0.1	0	+0.2

Hourly Means of Horizontal Force in C. G. S. Units (Corrected for temperature) at Dehra Dinn from the selected quiet days in 1911.

Diurnal Inequality of the Horizontal Force at Dehra Dīn as deluced from the preceding Table.

Hoars.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	${ }^{13}$	${ }^{14}$	15	16	${ }^{17}$	18	19	${ }^{20}$	${ }^{21}$	22	${ }^{23}$	Mid.
Winter.																									
$\begin{gathered} 1911 \\ \text { Months. } \end{gathered}$	γ	7	y	γ																					
January	-2	-5	-7	-4	-4	-2	-2	+1	+5	+10	+4	-1	+1	+4	+2	+ 2	+2	+4	0	-1	-4	-2	-2	+2	-1
February	+1	-8	-6	-4	-4	-4	--1	+2	+8	+14	+17	+18	+17	+10	+1	-2	-3	-5	-6	-8	-6	-8	-7	-10	-2
March	-6	-7	-6	-6	-5	-4	--3	+1	+5	+9	+14	+16	+16	+12	+-8	+3	-2	-3	-3	-7	-8	-8	-8	-7	-5
October	-3	-3	-1	+2	+1	+2	+1	+1	-1	-2	0	+6	+10	+12	+9	+5	+1	-2	-3	-5	-8	-6		-3	-3
November	-3	-2	-2	-3	-3	-1	0	0	+1	+4	+5	+10	+13	+10	+4	0	-3	-5	-4	-5	-6	-6	-6	-3	-3
December	+1	-3	-1	-2	-1	+1	+2	+3	0	-3	-4	-1	+3	+4	-1	-2	-2	-1	0	-1	0	+1	-4 +1	-2 +3	0 +8
Means	-2	-4	-3	-2	-2	-1	0	+2	+3	+6	+6	+8	+10	+9	+4	+1	-1	-2	-2	-4	-4	-4	-4	-2	0

Summer

Hourly Means of Vertical Foree in C．G．S．Units（Corrected for temperature）at Dehra Dūn from the selected quiet days in 1911.

妇	
\％区	
宗義号号	

Diurnal Inequalily, of tne Vertical Forec at Dehita Dünnas deduced from the preceding Table.

Hour.	mid.	1	${ }^{2}{ }^{3}$	4	5	6	7	8	${ }^{9}$	10	${ }^{11}$	Noon.	${ }^{13}$	${ }^{14}$	15	${ }^{16}$	17	18	19	${ }^{20}$	${ }^{21}$	${ }^{22}$	${ }^{23}$	Nid.
Winter.																								
${ }_{\text {chen }}^{1911}$ Morth.	γ	${ }^{\gamma}$	${ }^{\gamma}$	γ	γ	r	γ	γ	γ	r	γ	r	γ	γ	r	γ	γ	γ	r	r	r	γ	γ	r
Janaary	+2	+1	+1 +1	+1	+1	0	+1	+3	+5	0	-7	-6	-3	-	-5	-2	+1	+1	0	0	+2	+2	+3	+2
Febraary	-	${ }^{-1}$	$0{ }^{\circ}$	0	0	0	0	+2	+1	-2	-2	-3	-4	-2	0	-1	${ }^{-1}$	0	+1	+1	+1	+1	+1	+2
March	+3	+3	+ ${ }^{\text {+ }}$	+2	+1	+2	+5	+7	${ }^{+5}$	+1	-8	-13	-12	-6	-3	${ }^{-1}$	+1	+1	0	0	+1	+1	+i	+1
October	+1	+1	+1 +2	+1	+1	+1	+	+4	+1	-4	-9	-10	-6	-3	-1	+1	-1	-	+1	+1	+2	+2	+2	+2
Noveesber	+3	${ }_{+}$	+2, +2	+2	+2	+2	+3	+3	0	-4	-7	-5	-5	-3	-1	-1	-1	+1	+1	${ }^{+1}$	+1	+1	+2	+2
Devember	$+2$	+1	+1 +1	+1	+1	+2	+2	+3	+2	-1	-4	-2	0	+1	+1	+1	0	0	0	0	0	0	0	0
Heans	+2		+ ${ }_{\text {, }}$ +1	+1	+1	+1	+3	+4	+2	-2	-s	-6	--5	-3	-1	0	0	+1	+1	+1	+1	+1	+2	+2

Summer.																								
April	+4		+3	+2	+2	+2	+3	+6	+5	-1	-1	-12	-11	-8	-5 -2	-1	0	+1	+1	+2	+3	+4	+4	+4
$M_{\text {ma }}$	+1	+1	+1	+1	+2	+2	+6	+5	0	-6	-10	-12	-9	-6	-2 +2	+2	+2	+2	+2	+2	+3	+3	+3	+3
Jane	+9	+9	+8	+7	$+6$	+8	+10	+9	+2	-4	-9	-15	-15	-13	-9 -7	-3	0	+1	0	0	\checkmark	0	0	0
July	4.3	${ }^{+}$	+4	+3	+3	+4	$+8$	+5	+2	-3	-10	-15	${ }^{-12}$	-8	-5 -2	+1	+1	+1	+1	+2	+3	+9	+4	+4
Anguat	${ }^{\text {+ }} 1$	+2	+1	0	+1	+1	+4	+8	-3	-3	-9	-10	-11	-7	-4	+1	+1	+2	+3	+3	+5	+5	+5	+5
September	+1	+1	+1	0	0	+1	+2	+4	+4	-1	-8	-11	-8	-4	-1	+3	+2	+1	+1	+2	$+3$	+2	+2	+3
$M_{\text {cans }}$	+3	+3	+3	+2	+2	+3	+ 5	+6	+3	-3	-9	-12	-11	-8	-1	+1	+1	+1	+1	+2	+3	+3	+3	+3

Hourly Means of the Dip as determined at Dehra $D_{\bar{u} n}$ from the selected quiet days in 1911.

Hoor.	mia.	1	2	3	4	5	${ }^{6}$	7		9	10	11	Noon.	13	${ }^{14}$	15	16	17	18	19	20	${ }^{21}$	${ }^{22}$	${ }^{23}$	mid.	Mens.
$43^{\circ}+\quad$ Winter.																										
Moith.																										
January	${ }^{59 \cdot 1}$	59.1	$58 \cdot 3$	59.1	59.1	5990	59.	58.9	598	58.6	${ }^{587}$	58\%	58.5	58.5	58.	58.5	586	697	$58 \cdot 9$	$58 \cdot 9$	59.1	59.1	59.1	$68 \cdot 9$	69.	$68 \cdot 9$
February	59.7	60.3	60.1	60.0	670	$6^{6 / 0}$	599	59.7	59.5	59.1	58.8	588	58.8	59.1	59.7	$59 \cdot 9$	59.9	60.0	${ }_{601}$	$60 \cdot 3$	60.2	60.3	60.3	80.4	60.	59:8
March	80.2	$80 \cdot 3$	in 1	60.1	60.1	60.1	600	59.9	599	59.5	59.1	58.5	$58 \cdot 2$	$58 \cdot 4$	59.0	59:4	59.8	59.9	$59 \cdot 9$	$60 \cdot 1$		60.2	60.2	60.1	60.1	597
October	64.2	642	${ }_{6+1}^{64}$	${ }^{6+0}$	640	639	${ }^{6 \pm 1}{ }^{\prime}$	61.1	$6_{6} \cdot 3$	$6+1$	63.7	632	*2.8	$63 \cdot 1$	$63 \cdot 4$	${ }^{63} 7$	640	640	64.1	643	643	64.4	64.4	642	64.2	3.9
Norember	${ }^{84} 9$	648	${ }^{6.4} 8$	$6+8$			647	${ }_{6+7}$	${ }_{64} 6$	$6+3$	${ }^{6 \times 1}$	637	83.6	$63 \cdot 8$	642	645	6 ± 7	64.8	64.8	64.8	$64 \cdot 9$	649	648	64.8	${ }^{6} 17$	${ }^{64} 6$
Dceember	65:1	8\%\%	65.4	65.		, 653	65.3	65.2	654	e5.8	65.5	65.2	65.0	$65 \cdot 1$	$65 \cdot 4$	65.4	65.4	65.4	$65 \cdot 3$	65.4	$65 \cdot 3$	65.2	65.2	65.1	5	653
Mears	62.3	02. 4	62.3	69.2	62.2	\|62\%	62.2	62.1	${ }^{62} 1$	61.9	61.7	${ }^{613}$	81.2	613	$61 \cdot 7$	61.9	62.1	$62 \cdot 1$	62:2	62.3	62.3	62.4	6*3	62.3	2.2	${ }^{62} 0$

Summer.																										
April	612	81.3	61.1	610	61.1	61.0	$61 \cdot 1$	61.2	61.2	60.7	60.0	596	59.5	59.6	59.8	602	60.5	60.7	0	61.0	61.1	61.1	$61 \cdot 2$	2	$61 \cdot 2$	60.7
May	615	61.5	61.6	61.6	61.8	${ }^{616}$	61.8	${ }^{82} 1$	619	61.4	610	60.7	$80 \cdot 5$	$60 \cdot 5$	$60 \cdot 9$	61.2	614	61.7	61.8	618	61.8	61.7	61.5	61.6	614	61.4
June	82.7	62:6	62.6	${ }^{63} 6$	62.7	${ }^{62} 6$	62.7	62.5	62.2	618	61.3	60.7	60.5	00.5	$60 \cdot 6$	61.1	81.9	62.4	$62 \cdot 4$	623	62.2	62.2	62.2	62.2	6\%1	$62 \cdot$
Jaly	62.7	63.7	62.6	626	62.7	62.7	62.7	629	83.0	627	62.3	${ }^{16} 16$	114	14	61.6	61.7	62.1	62.5	62:6	62.7	62.7	62.6	62.6	62.6	62.6	62.4
August	630	629	63.1	63.1	$63 \cdot 1$	63.1	63.3	63.	$83 \cdot 5$	$63 \cdot 2$	62.7	62:4	82.0	62.0	62.2	62.4	62.7	629	63.0	63.1	63.1	69.0	63.0	${ }^{63}$	$62 \cdot 9$	62,9
September	62.8	62.8	627	62.7	628	62:8	62.7	63.1	83:4	63.3	82.8	${ }^{\text {e2 }}$	62.2	${ }_{82} 1$	62.2	62.4	62.7	62.8	62.8	62.8	$62 \cdot 9$	628	$62 \cdot 9$	$62 \cdot 8$	62.9	62.7
,	- 62.3		$62 \cdot 3$	$62 \cdot 3$	62.4	62:3	624	2.5	62.5	62.2	61.	61.2	1.0	61.0	1.2	61.5	619	$62 \cdot 2$	$62 \cdot 3$	${ }^{23}$	${ }_{62} 3$	$2 \cdot 2$	62.2	2	2	

Huars.	mid.	1	2	s	4	5	6	;	8	3	10	11	Nocs.	13	14	15	16	17	18	19	${ }^{20}$	${ }^{21}$	22	${ }^{3}$	Mid.
Winter.																									
1911			,																				,		
Jauasy	+0.2	+0.2	+0.4	+0.2	+0.2	+0.1	+0.1	0	-0.1	-0.3	-0.2	-0.4	-0.4	-0.4	-0.4	-0.4	-0.3	-0.2	0	0	+0.2	+0.2	+0.2	0	+0.1
Febrary	-0.1	+0.4	+0.3	+0.2	+0.2	+0.2	+0.1	-0.1	-0.3	-0.7	-1.0	-1.0	-1.0	-0.7	-0.1	+0.1	+0.1	$!+0.2$	+0.3	+0.5	+0.4	+0.5	+0.5	+0.0	+02
March	+0.5	+0.8	+0.4	+0.4	+0.4	+0.3	+0.3	$+0 \cdot 2$	+0.2	-0.2	-0.6	-1.2	-1.5	-13	-0.7	-0.3	+0.1	+0.2	+0.2	+0.4	+0.5	+0.5	+0.5	+0.4	$+0.4$
Ortober	+0.3	+0:3	+02	+0.1	+0.1	0	+0.1	+0.2	+0.4	+02	-0.2	-0.7	-1.0	-0.8	-0.5	-0.2	+0.1	+0.1	+0.2	+0.4	+0.4	+0.5	+0.5	+03	+03
November	- +0.3	+0.2	+ 0.2	+0.2	+0.2	+0.1	+0.1	+0.1	0	-0.3	-0.5	-0.9	-10	-0.8	-0.4	-0.1	+0.1	+0.2	+0.2	+0.2	+0.3	+0.3	+0.2	+0.2	+0.1
December	. +0.1	+0.2	+0.1	+01	$+0.1$	0	0	-0.1	+0.1	+0.3	+0.2	-0.1	-0.3	-0.2	+0.1	$+0.1$	$+0.1$	+0.1	0	+0.1	0	-0.1	-0.1	-0.2	-0.3
Means	+0.3	+0.4	$+0.3$	+0.2	+02	+0.2	+0.2	+0.1	+0.1	-0.1	-0.3	-0.7	-0.8	-0.7	-0.3	-01	+0.1	$+0.1$	+0.2	+0:3	+0.3	+0.4	+0.3	+0.3	+0.2
Summer.																									
		+0.6	+0.4	+0.3	+0.1	$+0.3$	+04	+0.5	+0.5	0	-0.7	-11	-12	-11	-0.9	-0.5	-0.2	0	+0.3	+0.3	+0.4	+0.4	+0\%	+0.5	+0.5
May	+0.1	+0.1	+0.2	+02	+04	+0.2	+0.4	+C.7	+0.5	0	-0.4	-0.7	-0.	-0.9	-0.5	-0.2	0	+0.3	+04	+0.4	10.4	+03	+0.1	+0.2	0
June	+0.7	+0.6	+0.6	+0.6	$+1 \cdot 7$	+0.6	+0.7	+0.5	+0.2	-6.2	- $\%$	-19	-1.6	-1.5	-1.4	-0.9	-0.1	+0.4	+64	+0.3	+0.2	+02	+0.2	+0.2	$+0.1$
July	+ 0.5	+0.3	+0.2	+0.2	+0.3	+0.3	+0.3	+0.5	+0.8	+0.3	-0.1		-1.0		-08	-0.7	-0.3	+01	+0.2	+0.3	+0.3	+0.2	+0.2	+ U^{2}	+0.2
A agust	$+0.1$	0	+0.1	+0.2	+0.2	+0.2	+0.4	+0.5	+0.8	$+0$			-0.0	-0.9	-0.7	-05	-0.2	0	+0.1	+02	+0-2	+0.1	+0.1	+ +1	0
September	+0.1	+0.1	0	\bigcirc	+0.1	$+0.1$	0	$+0.4$	+0.7	+0.6	+0.1	-0.4	-0.5	-0.6	-05	-0.3	0	+0.1	+0.1	+0.1	+ 42	+01	+0.2	+0.1	$+0.2$
Means	+03	$+0.3$	+0.3	+03	+0.4	+0.3	+0.4	+0.5	$+$	+0.2	-0.3	-0.8	-1.0	-10	-0.8	-0.5	-0.1	+0.2	+03	+0.3	+0.3	+(12	+0.2	+	$+0 \cdot 2$

D.-Tables of results at Barrackpore.

Diurnal Inequality of the Declination at Barrackpore as deduced from the preceding Thable.

Hoars.	Mid.	1	2	3	4	5	6	7	8	9	$10 \quad 11$	Noon.	13	14	15	16	17	18	' 19	20	21	22	28	Mid.
Winter.																								
1911 Months.	,	,	!	,		,	,	,	,	,	, ,	,	,	,	,	,	,	,	,	,	,	,	,	,
Janaary	$+0.2$	$+0.1$	-0.1	-0.1	$-1 \cdot 3$	-0.6	-0.8	$-1 \cdot 1$	-0.6	+0.6	+1.4 +0.9	0	0	$-0 \cdot 1$	-0.4	+0.1	+0.3	+0.3	$+0.4$	$+03$	$+0.5$	$+0.2$	+0.3	$+0.3$
Febroary	- -0.1	$+0.1$	0	-0.3	: -0.3	-0.4	-0.5	-0.8	-0.6	$+0 \cdot 2$	$+0.6+0.3$	$+0.2$	+0.1	0	+0.1	$+113$	$+0.3$	$+0 \cdot 1$	+0.1	+0.2	+0.1	+0.2	+0.1	$+0 \cdot 1$
March	- -0.3	-0.4	-0.4	-05	-0.6	-0.8	-0.8	-0.3	+1.0	$+2 \cdot 1$	+2.5 +1.9	+0.6	-0.5	-0.8	-0.6	-0.3	0	--0.1	-0.3	-0.5	-6.5	-0.5	-0.5	-0.4
October	. +0.2	$+0.2$	$+0 \cdot 1$	0	-0.2	-0.2	-0.2	+0.5	+1•0	+1'1	+0.1:-0.7	-0.9	-0.6	-0.4	+0.2	+0.4	$+0.3$	0	0	-0.1	-0.1	0	$+9.1$	$+6 \cdot 1$
November	. +0.1	$+0 \cdot 1$	0	-0.1	-0.2	- 0.3	$-0 \cdot 2$	0	+0.2	$+0 \cdot 3$	$-0.1-0.6$	-0.6	$-0 \cdot 3$	$+0 \cdot 1$	$+0.5$	$+0.4$	+0.1	+0.3	+0.2	+0.1	-0.1	0	+0.1	+01
December	. +0.2	$+0 \cdot$	$+0.1$	0	-0.2	-0.3	-0.3	0	$+0.6$	+0.8	+0.1-0.8	-0.8	-0.4	$+0 \cdot 3$	+0.6	$+0.4$	$+0 \cdot 1$	+0.2	+0.2	+0.1	0	0	+ $0 \cdot 1$	+0.1.
Means	- 0	0	-0.1	-0.2	-0.3	$-0 \cdot 4$	-0.5	$1-0.3$	$+0.3$	$+0.8$	+0.8 +0.2	-0.3	-0.3	-0.2	+0.1	+0.2	+0.2	+0.1	+0.1	0		0	0	0

Note.-When the sign is + the magaet pointa to the East, and when - to the West of the mean poaition.
Ilourly Means of Horizontal Force in C．G．S．Thits（Corrected for temperature）at Barrackpore from the selected quiet days in 1911.

Ноогs．	Mid．	1	2	3	4	5	${ }^{\circ}$		9			11	Noon．	13	14		16	17	18	19	80	21	22	23	Mid．	Meana．
$\cdot 37000$ C．G．S．+ Winter．																										
Months．	7	γ	$\boldsymbol{\gamma}$		γ		7	$\boldsymbol{\gamma}$	7	7	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	7												
January	318	314	312	312	314	314	317	321	325	331	332	334	332	332	328	327	325	322	322	319	319	315	315	314	320	321
February	325	329	317	318	322	322	322	327	333	343	346	349	348	314	335	326	32.	321	321	318	317	315	320	315	319	327
March	327	3：8	339	329	331	332	333	337	344	351	359	267	368	360	351	341	338	334	335	332	329	328	328	328	330	339
Oc：ober	329	329	329	331	334	335	336	333	334	339	346	351	353	348	343	339	335	332	330	328	326	325	325	328	324	335
Nevember	339	340	342	342	341	343	344	347	350	355	362	365	365	363	355	348	344	340	339	338	338	337	337	338	341	346
December	345	348	347	347	347	349	351	353	352	352	354	362	363	359	356	350	350	347	349	348	347	348	349	349	350	351
Means	331	330	329	330	332	333	334	336	340	3.45	350	355	355	351	345	339	336	333	33：	331	329	328	329	329	331	337

	㐌
	\％
๕\％\％\％\％\％\％	\％
	\％
	\％
\％\％\％\％\％\％\％	\％
	\％
	癸
\％\％\％\％\％\％\％\％	\％
	\％
	吕
	\％
	：
	吕
	\％
	\％
\％\％\％¢ ¢ \％\％	$\stackrel{\square}{\square}$
	$\stackrel{\rightharpoonup}{\text { a }}$
	\％
	骨
	砣
\％\％\％\％\％\％\％\％	\％
	产
	产
\％\％\％\％\％\％\％	\％
	\％
	家

Diurnal Inequality of the Horizontal Force at Barrackpore as deduced from the preceding Table.

Hours.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																									
1911 Months.	7	γ	γ	γ	${ }^{\gamma}$	7	γ	7	γ	γ	$\boldsymbol{\gamma}$	γ	γ	$\boldsymbol{\gamma}$	γ	γ	γ	γ	γ	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$
January .	-3	-7	-9	-0	-7	-7	-4	0	+4	+9	+11	+13	+11	+11	+7	+6	+4	+1	+1	-2	-2	-6	-6	-7	-1
February	-2	-5	-10	-9	-5	-5	-5	0	+6	+15	+19	+22	+21	+17	+8	-1	-3	-6	-6	-9	-10	-12	-7	-12	-8
March .	-12	--11	-10	-10	-8	-7	-6	-2	+5	+12	+20	+28	+28	+21	+12	+5	-1	-5	-4	-7	-10	-11	-11	-11	-9
October	-6	-6	-6	-4	-1	0	+1	-2	-1	+4	+11	+16	+18	+13	+8	+4	0	-3	-5	-7	-9	-10	-10	-7	-11
November	-7	-6	-4	-4	-5	-3	-2	+1	+4	+9	+16	+19	+19	+17	+9	+2	-2	-6	-7	-8	-8	-9	-9	-8	-5
December	-6	-3	--4	-4	-4	-2	${ }^{1}$	+2	+1	+1	+3	+11	+12	+8	+5	-1	-1	-4	-2	-3	-4	-3	-2	-2	-1
Means	-6	-7	-8	-7	-5	-4	-3	-1	+3	+8	+13	+18	+18	+14	+8	+2	-1	-4	-4	-6	-8	-9	-8	-8	-6
Summer.																									
April	-12	-10	-11	-9	-7	-7	-6	-6	-3	+7	+19	+25	+24	+20	+15	+10	+4	0	-4	-8	-10	-11	-9	-10	-9
May	-6	-4	-5	-4	-6	-5	-5	-5	-4	+1	+12	+15	+16	+17	+11	+3	-1	-5	-6	-7	--7	-5	-4	-2	-1
June	-9	-9	-8	-9	-9	-10	-6	0	+3	+9	$+11$	+21	+26	+28	+22	+13	-1	-10	-13	-12	-12	-11	-11	-11	-8
July	-7	-7	-8	-4	-4	-5	-5	-2	-4	-3	+8	+14	+20	+20	+15	+11	+4	-2	-5	-6	-8	-7	-6	-4	-4
Augast	-5	-5	-2	-4	-7	-5	-4	-4	-6	-3	+2	+8	+13	+13	+10	+8	+6	+2	0	-1	-1	-2	-1	-1	+1
September	-5	4	-2	-2	-2	-2	0	-1	-5	-4	+1	+6	+10	+11	+10	+6	+3	0	-3	-3	-3	-5	-3	-3	-2
Means	-8	-7	-6	-6	-6	-6	-5	-3	-3	+1	+9	+15	+18	+18	+14	+8	+2	-3	-5	-6	-7	- 7	-6	-5	-4

Hourly Means of Vertical Force in C. G. S. Units (Corrected for temperature) at Barrackpore from the selected quiet days in 1911.

Hoara.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	${ }^{14}$	15	16	17	18	19	20	${ }^{21}$	${ }^{22}$	23	Mid.	Means.
-22000 C. G.s.t Winter.																										
Manths.	γ	7	γ	γ	γ	7	7	γ	7																	
January	177	177	177	177	177	178	178	179	181	179	174	188	168	171	170	171	174	176	177	176	176	176	177	176	177	175
Febriary	1×5	184	185	185	185	186	186	187	180	189	187	186	186	186	184	182	183	184	185	184	185	185	185	184	186	185
March	201	201	201	${ }^{2} \mathrm{n}$	202	203	203	214	202	198	194	190	187	189	194	196	198	200	201	202	203	213	-04	204	204	199
Octuber	250	250	250	$\because 51$	251	231	251	253	251	247	244	241	240	341	24.4	244	245	246	$\because 48$	248	248	248	249	249	248	247
Norenter	257	257	257	257	256	257	257	258	25t	251	248	248	249	251	251	459	254	254	25 \%	254	255	254	254	253	253	254
Decemher	261	261	261	261	262	263	262	263	260	257	253	253	2056	268	259	261	261	262	263	262	261	261)	260	260	260	260
Means	232	222	222	222	22.3	223	223	224	223	220	21 2	214	214	216	217	218	219	220	221	221	221	221	222	221	221	220
Summer.																										
April	209	209		209	209	210	210	210	207	203	201	199	200	199	201	202	213	202	203	204	205	205	206	206	207	205
May .	206	216	205	205	206	207	209	205	202	199	196	196	197	199	200	200	201	200	201	203	20.4	205	206	205	206	003
June	216	216	217	216	218	218	220	221	218	216	215	216	216	219	217	216	215	218	218	218	218	219	219	219	218	217
Joly	223	223	233	223	223	224	225	223	219	217	214	213	213	214	215	217	217	220	221	222	222	224	224	$22 \overline{3}$	225	220
August	233	232	233	232	233	234	236	23.4	${ }^{2} 3$	230	227	224	225	226	226	227	227	227	227	230	231	231	232	232	232	230
Sepiember	9+3	243	243	24,	243		245	245	243	238	233	232	235	236	239	240	239	239	239	240	240	241	342	242	242	210
Meuns	222	222	222	221	223		224	223	20	217	214	213	214	216	216	217	217	218	218	220	220	221	223	222	222	219

Diarnal Inequality of the Vertical Force at Barrackpore as deduced from the preceding Table.

Hoars.	${ }^{\text {Mid. }}$	1	2	3	4	5	6	7	8	${ }^{9}$	16	11	Noon.	${ }^{13}$	14	15	16	17	18	19	20	${ }^{21}$	22	${ }^{23}$	Mil.
Winter.																									
${ }_{\text {Months. }}^{1911}$	7	γ	γ	γ	γ	γ		${ }^{\gamma}$	γ																
Janarary	+2	+2	+2	+2	+2	+3	+3	+4	+6	+4	-1	-7	-.7	-4	-	-4	-1	+1	+2	+1	+1	+1	+2	+1	+2
Febraary	0	-1	0	0	0	+1	+1	+2	+4	+4	+2	+1	+1	+1	-1	-3	-2	-1	0	-1	0	0	0	-1	+1
March	+2	+2	+2	+3	+3	+3	+3	+5	+3	-1	-5	-9	-12	-10	-5	-3	-1	+1	+2	+3	+4	+4	+5	+5	+5
October	+3	+3	+3	+4	+	+4	+4	+6	+4	0	-3	-6	-7	-6	-3	-3	-2	-1	+1	+1	+1	+1	+2	+2	+1
Novemiber	$\stackrel{+}{ }$	+3	+3	+3	+2	+3	+3	+2	0	-3	-6	-6	-5	-3	-3	-2	0	0	0	0	+1	0	0	-1	-1
Decemoer	+1	+1	+1	+1	+2	+2	+2	+3	0	-3	-7	-7	-4	-2	-1	0	+1	+2	+3	+2	+1	0	0	0	$1)$
Means	+ ${ }^{2}$	$+2$	+3	+2	+2	+	+ 3	+4	+3	0	-3		-6	-4	-3	-2	-1	0	+1	+1	+1	+1	+2	+1	+1

Summer.																									
Aprii	${ }^{+4}$	+ ${ }^{\text {b }}$	+1	+4	+	+5	+5	+5	+2	-2	-4	-8	-5	-6	-5	-3	-2	-3	--2	-1	0	0	+1	+1	+2
May	+3	+3	+2	+2	+ ${ }^{+}$	+4	+6	+2	-1	-4	-7	-7	-6	-4	-3	-3	-2	-3	-2	0	+1	+2	+3	+2	+3
Jane	-1	-1	0	-1	+1	+1	+3	+4	+1	-1	-2	-1	-1	+2	0	-1	-2	+1	+1	+1	+1	+2	+2	+2	+1
Jaly	+3	+3	+3	+3	+3	+4	+5	+3	-1	-3	-6	-7	-7	-6	-5	-3	-3	0	+1	+2	+2	+4	+4	+5	+5
August	+3	+2	+3	+2	+3	+4	+6	+4	+3	0	-3	-8	-5	-4	-4	-3	-3	-3	-3	0	+1	+1	+2	+2	+2
September	+3	+3	+3	+2	+3	+4	+5	+5	+3	-2	-7	-8	-5	-4	-1	0	-1	-1	-1	0	\bigcirc	+1	+2	+2	+2
-itamg	+3	+3	+3	+2	+3	+4	+5	+4	$+1$	-2	-5	-8	-5	-3	-3	-2	-2	-1	-1	+1	+1	+2	+3	+3	+3

Hourly Means of the Dip as determined at Barrackpore from the selected quiet days in 1911.

fours.	Mn.t.	1	2	3	4	5	6	7	8	9	${ }^{10}$	${ }^{11}$	Noon	${ }^{13}$	14	15	16	17	18	19	20	${ }^{21}$	22	23	mid	Menns.
Winter.																										
Montias.		,									,							,	,		,		,	,	,	
Januery	$43 \cdot 3$	435	43.5	$43 \cdot 5$	435	43.5	43.4	43.3	$43 \cdot 3$	13.0	12.5	42.1	$42 \cdot 2$	42.4	42.5	42.6	42.8	$43 \cdot 1$	$43 \cdot 2$	43.2	43.2	43.4	43.4	$43 \cdot 4$	43.2	$43 \cdot 1$
Feb=aury	$13 \cdot 6$	$13 \cdot 6$	439	$43 \cdot 9$	13.7	43.8	$43 \cdot 8$	43.6	$43 \cdot 5$	132	$42 \cdot 9$	42.7	42.7	429	$43 \cdot 1$	43.3	43.5	43.7	$43 \cdot 8$	43.8	$43 \cdot 9$	44.0	43.8	$43 \cdot 9$	$43 \cdot 9$	$43 \cdot 5$
Marcb	4.6	4.6	4.5	4.6	4	t ${ }^{\text {d }}$	4 ± 4	+14	14.0	13.4	428	42.2	42.0	42.	43.2	43.5	43.9	412	44.2	44.4	$44 \cdot 6$	44.7	44.8	44.8	44.7	44.0
October	15.8	478	47.8	478	17.7	$17 \cdot 6$	476	47.9	17.7	47.2	16.7	463	462	46.4	$46 \cdot 8$	47.0	47.2	47.4	47-5	47.8	478	47.9	47.8	47.8	47.9	$47 \cdot 4$
Novemier	479	$4 \pi 9$	47.8	478	478	178	37	47.5	47.3	468	46.1	46.2	16.3	46.5	46.8	472	47.5	47.7	47.7	478	47.8	47.8	478	47.7	$47 \cdot 5$	47.4
Ueccniber	47.8	478	478	17\%	17.9	17\%	478	47	176	47.4	45	48.7	46.9	47.2	47.4	47.7	47.7	47.9	47.9	47.9	$47 \cdot 8$	47.8	47.7	47.7	47.7	47.6
Means	15.9	459	45.9	+59	45.9	45.8	45.8	45.7	$40^{\circ} 6$	45.2	44.7	$44 \cdot 4$	44.4	$44{ }^{\circ}$	45.0	45.2	$45 \cdot 4$	45.7	45.7	45.8	$45 \cdot 9$	$45 \cdot 9$	$40^{\circ} 9$	$45 \cdot 9$	$45 \cdot 8$	45.5

April	45.2	$45 \cdot 2$	45^{-2}	$45 \cdot 1$	450	451	45.1	451	$44 \cdot 3$	4×1	$43 \cdot 4$	43.1	43.2	$43 \cdot 3$	$43 \cdot 5$	$43 \cdot 9$	44.2		44.5	44.8	$44 \cdot 9$	44.9	449	$45^{\circ} 0$	$45^{\circ} 0$	$44 \cdot 5$
May	$4{ }^{4} 8$	4.8	447	4.7	448	449	45.0	447	445	4 ± 1	43.4	$43 \cdot 3$	43.3	$43 \cdot 4$	43.8	441	44.3	44.4	44.5	44.7	448	44.7	44.8	44.6	44.7	$44 \cdot 4$
June	$45 \cdot 4$	45.4	$45 \cdot 4$	45.4	45.5	$45 \cdot 6$	45.5	453	450	417	$44 \cdot 5$	4.2	44.0	$44 \cdot 1$	$44 \cdot 2$	44.5	45.0	456	457	$4{ }^{3} 6$	$45 \cdot 6$	$45 \cdot 6$	$45 \cdot 6$	$45^{6} 6$	$45 \cdot 5$	$45 \cdot 1$
July	459	45.9	46°	45.8	$45 \cdot 8$	459	48.0		40.6	$40^{\circ} \cdot 4$	$44 \cdot 8$	44.4	44.2	44.3	446	448	$45 \cdot 1$	45\%	45.7	45.8	$45 \cdot 9$	46.0	46.0	46.0	46.0	45.5
August	$4{ }^{3 \cdot 6}$	46.5	46.5	$46 \cdot 5$	46.7	467	48.8	$46 \cdot 6$	$46 \cdot 6$	$46 \cdot 3$	45-9	45.5	$45 \cdot 3$	$45 \cdot 4$	$45 \cdot 5$	45.7	45.7	$45 \cdot 9$	46.0	46.2	46.3	46.4	$46 \cdot 4$	$46 \cdot 4$	46.3	46.2
September	473	17.3	$47 \cdot 2$	47.	17.2	47.3	47.3	47.3	17.3	$4 \pi 0$	46.4	$48 \cdot 2$	46.2	$46 \cdot 3$	40.5	$46 \cdot 7$	$46 \cdot 8$	46.9	47.0	47.1	47.1	47.2	47.2	47.2	47.2	47.0
Meas	45.9	459	458	45.8	45.8	$40^{\circ} \mathrm{y}$	480	45.8	45.6	${ }^{50} 3$	147	44.5	44.4	44.5	44.7	45.0	45.2	45°	$45^{6.6}$	45.7	45.8	$45 \cdot 8$	$45 \cdot 8$	45.8	$45 \cdot 8$	45.4

Diurnal Inequality of the Dip at Barrackpore as deduced from the preceding Table.

Huars	Mid.	1	2	3	4	5	6	7		9	10	11	Noon.	13	14	15	16	17	18	19	20		22	23	Mid.
Winter.																									
$\begin{gathered} 1911 \\ \text { Months. } \end{gathered}$,	,	,						,	,		,	,	,	,	,			,	,	,	,	,	,	,
January	+0.2	$+0.4$	+0.4	+0.4	+0.4	$+0.4$	+0.3	+0.2	$+0.2$	-0.1	-0.6	-1.0	$\div 0.9$	-0.7	-0.6	-0.5	-0.3	0	$+0.1$	+0.1	$+0.1$	+0.3	$+0.3$	+0.3	$+0.1$
February	+0.1	$+0.1$	+0.4	+0.4	$+0.2$	+0.3	+0.3	+0.1	0	-0.3	-0.6	-0.8	-0.8	-0.6	-0.4	-0.2	0	+0.2	+0.3	+0.3	+0.4	+0.5	+0.3	+0.4	$+0.4$
Marcin	+0.6	+0.6	+0.5	+0.6	+0.5	+0.4	+0.4	+0.4	0	-0.6	-1.2	-1.8	-2.0	-1.6	-0.8	-0.5	-0.1	+0.2	+0.2	+0.4	+0.6	+0.7	$+0 \cdot 8$	+0.8	$+0.7$
October	+0.4	+0.4	+0.4	+0.4	+0.3	$+0 \cdot 2$	+0.2	+0.5	$+0.3$	-0.2	-0.7	-1.1	-1.2	-1.0	-0.6	-0.1	-0.2	0	$+0.2$	+0.4	+0.4	+0.5	$+0.5$	$+0.4$	$+0.5$
November	+0.5	+0.5	+0.4	$+0.4$	+0.4	+0.4	$+0.3$	+0.1	-0.1	-0.6	-1.0	-1.2	$-1 \cdot 1$	-0.9	-0.6	-0.2	+0.1	$+03$	$+0.3$	+0.4	+0.4	$+0.4$	$+0.4$	$+0.3$	$+0.1$
December	. +0.3	+0.2	+0.2	+0.2	+0.3	$+0.2$	+0.2	+0.1	0	-0.2	-0.6	-0.0	-0.7	-0.4	-0.2	-0.1	$+0.1$	+03	+0.3	+0.3	+0.2	$+0.2$	$+0.1$	+0.1	$+0.1$
Means	+ +0.4	+0.4	+0.4	+0.4	+0.4	$+0.3$	$+03$	+0.2	$+0 \cdot 1$	-0.3	-0.8	-1.1	$-1 \cdot 1$	-0.9	-0.5	-0.3	-0.1	$+0.2$	$+0.2$	+0.3	+0'4	$+0.4$	$+0.4$	+0.4	$+0.3$

Diurnal Inequality of the Vertical Force at Tonagoo as deducod from the proceding Table.

b. - Tables of results at Towngoo.
Howrly Means of the Declination as determined at Toungon from the selected quiet days in 1911.

Hoars.	Mid.				4	5	6	7	8	9		11	Nuon.	13	14	15	16	17	18	19	20	21	22	23	Mid.	Meana.
	E. $0^{\circ}+\quad \mathrm{W}$																									
Months.																						,				
January	290	21.8	21\%	91.6	21:5	$21 \cdot 2$	219	20.8	210	29\%	$22 \cdot 7$	$22 \cdot 4$	219	290	21.8	21.6	217	220	$22 \cdot 0$	22.0	22.0	22.0	22.0	$2 \cdot 9$	21.9	21.8
Fejeruary	21.6	213	411	2	$31 \cdot 1$	211	20%	207	20.8	$21 \cdot \%$	21.7	21.7	21.6	21.6	213	213	215	21.6	215	215	21.6	21.4	\pm	214	21\%	21.3
Mareb	21.0	$20 \cdot 9$	310	348	30.6	2) 4	20.3	209	218	238	23.0	228	21.9	210	21.4	206	21.0	21.1	21.0	21.1	21.0	20.8	20.8	208	$\because 0.8$	$21 \cdot 1$
Octuber	17.7	177	17.7	17.5	174	173	17.5	18.0	18.5	18.4	178	16.9	16.8	171	17.1	17.7	17.9	$17 \cdot 8$	17.5	176	17.5	17.4	$17 \cdot 4$	175	17.6	17.6
November	17.1	171	170	1.0	$16 \cdot 9$	167	167	16.9	17.0	$16 \cdot 9$	16.8	$16 \cdot 4$	$18 \cdot 4$	$16 \cdot 8$	17.2	17\%	17.4	17.2	17.2	17.1	17.1	170	17.0	17.0	17.0	17\%
December	16.7	16.1	16%	165	164	163	$16 \cdot 1$.164	16.8	17.2	16.5	16.0	15.9	16.3	16.5	16.8	17.0	167	16.6	167	166	16.5	165	165	16.6	10:5
Means	193	$19 \cdot 2$	192	19.1	190	$18 \cdot 8$	18.7	19.0	19\%	$10 \cdot 8$	198	19-4	19.1	$19 \cdot 1$	$19 \cdot 1$	$19 \cdot 2$	19.4	$19 \cdot 4$	$19 \cdot 3$	$19 \cdot 3$	19.3	19.2	$19 \cdot 2$	$1: 92$	19.2	$19 \cdot 2$
												Sum	mer.													
April	20.5	20.5	$\because 07$	21.6	20.6	214	209	21.8	221	$22 \cdot 0$	21.4	$20 \cdot 9$	$20 \cdot 4$	19.8	$18 \cdot 5$	198	20.6	$20 \cdot 9$	$20 \cdot 6$	$20 \cdot 4$	$20 \cdot 2$	$20 \cdot 2$	$20 \cdot 3$	203	$20 \cdot 3$	20.7
May	20.1	$20 \cdot 1$	$20 \cdot 1$	202	$20 \cdot 2$	20.3	21.2	22.2	22	$21 \cdot 3$	204	194	18.5	$18 \cdot 4$	187	19.0	$19 \cdot 6$	19.9	19\%	19.9	197	$19 \cdot 6$	19.8	19.9	$20 \cdot 0$	20.0
June	197	$19 \cdot 8$	19.9	19.9	$\because 0.0$	20.1	$21 \cdot 3$		22.0	21.2	20.2	19.1	18.4	$18 \cdot 3$	18.3	$18 \cdot 4$	19.0	197	19.7	$19 \cdot 2$	$19 \cdot 3$	$19 \cdot 3$	19.4	19.5	$19 \cdot 6$	19.7
July	$19 \cdot 1$	$19 \cdot 3$	19.5	19-4	19.4	19.6	20.2	$20 \cdot 8$	20.8	$20 \cdot 3$	19.4	18.1	17.7	17.5	17.5	18.0	$18 \cdot 6$	190	18.9	18.7	$18 \cdot 6$	18.6	18.7	18.8	19.1	19.0
August	$18 \cdot 6$	18.7	18.7	$18 \cdot 8$	18.8	19.0	$19 \cdot 8$	$20 \cdot 9$	21.0	$20 \cdot 2$	189	17.7	16.9	16.7	16.9	17.2	17.8	18.2	18.1	18.2	$18 \cdot 2$	18.1	$18 \cdot 2$	$18 \cdot 3$	18.5	18.5
Septemior	18.0	$18 \cdot 1$	$18 \cdot 1$	18.1	18.1	18.0	18.5	19.7	20.1	$19 \cdot 5$	18.4	17.2	16.7	16.4	16.7	$17 \cdot 4$	$18 \cdot 2$	18.5	18.1	17.9	17.9	17.9	17.9	18.0	18.0	18.1
Means	$19 \cdot 3$	19.4	193	19.5	19.5	19.6	$20 \cdot 3$	21:3	21.4	20.8	19.8	18.7	18.1	$17 \cdot 8$	17.9	$18 \cdot 3$	19.0	194	$19 \cdot 2$	$19 \cdot 1$	$19 \cdot 0$	190	$19 \cdot 1$	$19 \cdot 1$	19.3	$19 \cdot 3$

Diurna: Inequality of the Declination at Toungoo as deduced from the preceding Table.

Hoars.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	${ }^{13}$	14	15	16	17	18	19	20	${ }^{21}$	22	${ }^{23}$	mid.
Winter.																									
$\begin{gathered} 1911 \\ \text { Monthe. } \end{gathered}$,											,	,	,	,	,	,	,			,	,	,	-
January	$+0.2$	0	-0.1	-0:2	-0.3	-0.6	-0.9	-10	-0.8	+0.2	+0.8	+0.6	+0.1	+0.2	0	-0.2	-0. 1	$+0.2$	+0.2	+0.2	+0.2	+0.2	$+0.2$	+0.1	$+0.1$
Februs:y	+0.1	0	+0.1	-0.1	-0.2	-0.2	-0.4	$0 \cdot 6$	-0.5	-01	+0.4	+0.4	+0.3	+0.1	0	0	+0.2	+0.3	+0.2	+0.2	+0.3	+0.1	+0.2	+0.1	+0.2
March .	-0.1	-0.2	-0.1	-0.3	-0.5	-0.7	-0.8	-0.2	+0.7	+17	+1.9	+17	+0.8	-0.1	-0.7	-0.5	-0.1	0	-0.1	0	-0.1	-0.3	-0.3	-0.3	$-0 \cdot 3$
October	+0.1	$+0.1$	+0.1		-0.2	-0:3	-0.1	+0.4	+0.9	+0.8	+0.2	-0.7	-0.8	-0.5	-0.5	+0.1	+0.3	+0.2	-0.1	0	-0.1	-0.2	-0.2	-0.1	0
Norember	+0.1	+0.1	0	!	-0.1	-0:3	\cdots	-0.1	0	-1.1	-02	-0.6	-0.0	-02	+0.2	+0.4	+0.4	+0.2	+0.2	+0.1	+0.1	0	0	0	0
December	+0.2	$+0.1$		0	-0.1	-0.2		19	+0.3	+0.7	0	-0.5	-0.6	-0.2	0	$+0.3$	+0.5	+0.2	+0.1	+0.2	+0.1	0	0	0	$+0.1$
Heans	$+0.1$	0	0		-0.2	-0.4		-0.2	+0.1	+0.8	+0.6	+0.2	- 1	-0.1	-	0	$+0.2$	+0.2	+0.1	+0.1	+0.1	0	0	0	0
Summer.																									
April	-0.2	-0.2	0	-1.1	-0.1	-03	$+0 \cdot 2$	+1.1	+1/4	+1:3	+0.7	$\therefore 02$	-0:3	-0.9	-1.2	-09	-0.1	+0.2	-0.1	-0:3	-0:5	-0.5	-0.4	-0.4	-0.4
May	$\div(1)$	+0.1	+0.1	+0,	$+0.2$	+0,	+12	+2.2	$+2 \cdot$	+1.3	+0.1	-0.6	-1\%	-1.6	-1.3	-1.0	-0.4	-0.1	$\rightarrow 0.1$	-0.1	-0.3	-0.4	-0.2	-0.1	0
June	0	+0.1	+0.2	+02	+0.3	$+0.4$	+1.6	+2.3	+2'3	+1:5			-1.3	-14			-0.7	0	0	-0.5	-0.4	-0.4	-0.3	-0.2	-0.1
Jaly	+ 0.1	+0.3	+0.5	+0.4	+0.4	+0.6		+1. 9	+1.8	+1:3	+0.4	-0.9	-1:3	-1.5	-1.5	-1.0	-0.4	0	-0.1	-0.9	-0.4	-0.4	-0,	-0.2	$+0.1$
August	+0.1	+0.2	+0.2	$+0.3$	+0.3	40.5	+13	+2.4	+2.5	+1.7	+0.4	-0.8	-1.6	-1.8	-1.6	$-1 \cdot 3$	-0.7	-0.3	-0.4	-0.3	-0.3	-0.4	-0.3	-0.2	0
September	-1) 1		0		0	- 0.1	+0.4	+1.6	+2:0	+1.4	+0.3	-0.9	-1.4	-1.7	-1.4	-0.7	+0.1	+0.4	0	-0.2	-0.2	-0.2	-0.4	-0.1	-0.1
Means	0	+0.1	+ +0.2	+ 102	$\bigcirc 0.2$	$+0.3$	$+10$	+2.0	+2.1	+1.5	+0.5	-0.6	-1.2	-1.4	-14	-1.0	-0.3	+0.1	-0.1	-02		-0.3	-0.2	-0.2	0

Mourly Means of Horizontal Force in C．G．S．Units（Corrected for temperature）at Towngoo from the selected quiet days in 1911.

Huars．	Mid	1	2	${ }^{3}$	${ }^{4}$	5	${ }^{6}$	7	8	${ }^{9}$	10	11	Noon．	13	14	15	${ }^{16}$	17	18	19	${ }^{20}$	${ }^{21}$	22		Mid．	Meana．
－38000 C．C．S．t Winter．																										
Montbe．	γ	γ	γ	γ	7	γ	γ	γ	γ	γ	7	γ	γ	γ	7	γ	$\boldsymbol{\gamma}$	γ	γ	γ	γ	7	γ	7	γ	γ
January	827	831	8 ± 6	824	885	$83:$	839	832	837	842	848	848	846	843	838	835	833	832	831	829	826	827	825	826	830	833
February	837	836	829	836	829	831	831	836	843	849	856	857	859	855	847	＊39	833	830	828	826	822	824	823	826	823	836
3 arct	837	339	840	840	842	843	844	847	866	866	873	878	878	870	880	851	846	842	841	841	839	837	837	839	839	849
October	556	853	853	854	856	858	859	858	859	869	876	881	880	873	868	862	858	856	855	853	852	851	851	851	852	860
November	855	857	858	860	859	860	862	866	873	880	887	880	888	883	876	870	866	862	858	857	857	857	857	858	860	866
December	854	855	857	857	857	857	860	863	868	871	876	879	877	869	864	859	855	855	856	806	855	$85 \overline{5}$	857	857	858	861
Means	${ }^{4} 3$	844 ${ }^{5}$	844	S44	845	846	848	850	856	863	869	872	871	866	859	853	849	846	845	844	842	842	842	843	844	851

	\％
梁 앙	
	富
	䓵
	）
	\％
峏	含
	\％
	芯
	$\stackrel{\square}{0}$
	$\stackrel{\square}{8}$
	鿬
	$\stackrel{\text { F }}{\text { ¢ }}$
这	器
㦴	魿
	\％
	洞
	骨
	容
	诸
	谷
	务
\％\％\％	\％
	串
	\％
	哭

Diurnal Inequality of the Horizontal Force at Toungoo as deduced from the preceding Table

Hoora.	mid.	1	2	${ }^{3}$	4	5	${ }^{6}$	7	${ }^{8}$	9		${ }^{11}$	Noon.	13	14	15			18	19	${ }^{20}$	${ }^{21}$		${ }^{23}$	Mid.
Winter.																									
${ }_{\text {M }}^{1911}$	γ	r	7	r	r	γ	${ }^{7}$	r	r	7	7	r	γ	γ	r	7									
Janaary	-6	-	-7	-	-8	-6	-4	-1	+4	+9	+15	+15	+13	+10	+5	+2	0	-1	-2	-4	-7	-6	-8	-7	${ }^{-3}$
Febraasy	-9	0		-10	-7	-5	-5	0	+7	+13	+20	+21	+23	+19	+11	+3		-6	-8	-10	-14	-12	-13	-10	-13
March	-12	-10	-9	-9	-7	-6	-5	-2	+7	+17	+24	+29	+29	+21	+11	2	-3	-7	- 8	-8	-10	-12	-12	-10	-10
Octocor	-	-i	-i	-6	-4	-2	-1	-2	-1	+9	+16	+21	+20	+13	+8	+2	-2	-4	-5	-7	-8	-		-9	-8
Norember	-1	-9	-8	-6	-7	${ }^{-6}$	-4	0	+7	+14	+21	+24	+22	+17	+10	+4	0	-4	-8	-9	-9	-9	-9	-8	${ }^{-6}$
Decemier	-7	-6	-4	- ${ }^{1}$	-4	-4	-1	+2	+7	+10	+15	+18	+16	8	+3	-2	-6	-6	-5	\cdots	-6	-6	- 4	-4	-3
Means	-	-6	-7	-7	${ }^{-6}$	${ }^{-5}$	-3	-1	+5	+12	+18	+21		+10	+8			-5	-6	-7	-	-9	-9	-8	\rightarrow

Sammer.																						
April	-13-12	-12	-10	-9		-8	-1	+10	+23	+34	+30	+22	+15	+8	-5	- 5	-8	-10	-9	-10	-10	-8
May	-8 -7	-7	-6	-6	-8 -7	-4		+10	+19	+23	+21	+17	+12	+3	- 0 - 0	-9	-8	-9	-9		-5	-4
June	-8: -8	-8	-8	-8	-10 -9	-2	+3	+8	+18	+23	+27	+26	+19	+12	$\begin{array}{ll}-1 & -13\end{array}$	-15	-13	-11	-10	-11	-10	+8
July	-9 -9	-9	-8	-7	${ }_{-6}-^{-7}$	\sim^{-3}	-1	+2	+12	+19	+24	+21	+14	+8	+2 ${ }^{-4}$	-7	-6	-6	\rightarrow	-5	-5	\rightarrow.
Angust	-8	-7	-6	- 0	-8 -7	-6	-5	+3	+10	+14	+17	17	+11	+7	+4 -1	-4	-3	-5	-4	-4	-4	\rightarrow
September	-5 -5	-5	-4	- 5	-4 -2	-2	-3	+ 4	+12	+13	+15	+13	+9	+3	-2	-5	-3	-4	-6	-5	-5	${ }^{5}$
Means	-8	-8	-7	\rightarrow	-7 -7	-4			+16	+21	+23	+20	+14	+7	-5	-7	-7	-7	-7	\rightarrow	-6	-5

Hourly Means of Vertical Force in C. G. S. Ünits (Corrected for temperature) at Toungoo from the selected quiet days in 1911.

Hoars.	Mıd.	1	2	3	4	5	6	7	8	9	10	11	Noon.	${ }^{13}$	14	15	16	17	18	19	20	${ }^{21}$	22	28	Mid.	Houra.
-16000 C.G.S.t Winter.																										
Montlis.	γ	7	γ	7	γ	γ	γ	γ	γ	γ	${ }^{7}$	γ														
Janasry	514	512	512	512	512	513	513	513	513	514	512	511	509	508	511	516	518	519	520	521	523	523	523	522	621	515
February	515	515	516	516	516	516	517	516	517	516	514	512	513	515	517	519	519	521	522	$52 \pm$	526	528	528	529	529	519
March	548	527	527	527	526	626	526	527	527	535	222	520	516	516	518	521	523	525	527	528	529	529	529	530	530	525
October	550	550	549	551)	549	55')	552	551	549	543	537	535	535	540	543	546	517	545	545	547	548	548	549	650	549	646
Norember	551	5%	5.51	551	55.	551	551	550	547	544	541	539	541	544	545	546	547	547	548	549	550	350	550	551	551	548
December	539	638	538	538	533	538	537	538	535	528	522	5*3	525	529	533	536	536	536	536	538	638	538	539	539	540	535
Mesms	533	532	532	532	532	532	533	533	531	528	525	523	523	525	528	531	532	532	533	535	536	536	536	537	537	531

Diurnal Inequality of the Vertical Force at Toungoo as deduced from the preceding Table.

Hoars	Mià.	1	2	3		5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																									
1911 Months.	γ	γ	$\boldsymbol{\gamma}$	γ	γ	$\boldsymbol{\nu}$	7	$\boldsymbol{\gamma}$	ν	$\boldsymbol{\gamma}$	γ	γ	γ	γ	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	$?$	7
January	-1	-3	-3	-3	-3	-2	- 2	-2	-2	-1	-3	-4	-6	-7	-4	+1	+3	$+4$	+5	$+6$	+8	+8	+8	+7	$+6$
February	-4	-4	-3	-3	-.3	-3	-2	-3	-2	-3	-5	-7	-6	-4	-2	0	0	+2	+3	+5	+7	+9	+9	+10	$+10$
March .	+ 3	+2	$+2$	+2	+1	+1	+1	+2	+2	0	-3	-5	-9	-9	--7	-4	-2	0	+2	+3	$+4$	$+4$	+4	+5	$+5$
October.	+4	$+1$	+3	+4	+3	+4	$+6$	$+5$	+3	-3	-9	-11	-11	-6	--3	0	+1	$\cdots 1$	-1	+1	+2	+2	+3	+4	+3
November	+3	+2	+3	+3i	+2	+3	+3	$\cdots+2$	-1	-4	-7	.. $\boldsymbol{\theta}$	-7	-4	-3	-2	- 1	-1	0	+1	+2	+2	+2	+3	+3
December	+ 4	+3	$+3$	+3	$+3$	$+3$	+2	+3	0	-7	-13	-12	-10	-6	-2	+1	+1	+1	+1	+3	+3	+3	+4	+4	+5
Means	+	+1	+1	$+1$	$+1$	+1	$+2$	+2	0	-3	-6	--8	-8	-6	-3	${ }^{1}$	$+1$	$+1$	+2	+4	+5	+5	+5	+ 6	+6

Hourly Means of the Dip as determined at Toungoo from the selected quiet days in 1911.

Esara.	Sid.	:	2	3	\pm	5	6	7	8	9			Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid	Meane.
$23^{\circ}+\quad$ Winter.																										
Months.	,		,		,	,	,		,	,	,	,	,	,	,	,	,	,		,	,	,	,	,	,	-
Jamuary	2.5	$2 \cdot 2$	$2 \cdot 4$	2.4	2.4	2.4	$2 \cdot 3$	23	$2 \cdot 1$	2.0	1.7	1.6	1.5	1.5	1.9	2.4	$2 \cdot 6$	$2 \cdot 7$	$2 \cdot 8$	29	32	3*2	3.2	$3 \cdot 1$	$2 \cdot 9$	2.4
February	$2 \cdot 6$	23	$2 \cdot 6$	$2 \cdot 7$	$2 \cdot 5$	$2 \cdot 5$	26	23	$2 \cdot 2$	19	15	1.4	$1 \cdot 4$	17	21	2.5	2.7	$2 \cdot 9$	30	3.3	$3 \cdot 5$	$3 \cdot 6$	3.7	37	$3 \cdot 7$	2.5
Maron	3.2	9.1.	3.0	3.0	2.9	$2 \cdot 9$	3.9	28	2.5	21	1.6	$1 \cdot 3$	10	13	17	$2 \cdot 3$	2.5	$2 \cdot 8$	3.0	3.1	3.2	3.3	$3 \cdot 3$	$3 \cdot 3$	$3 \cdot 3$	$2 \cdot 6$
Outober	$4 \cdot 3$	4.4	43	43	-2	42	43	43	4.1	$\therefore 3$	$2 \cdot 7$	$2 \cdot 3$	23	30	$3 \cdot 3$	3.7	4.0	3.9	$3 \cdot 9$	41	43	$4 \cdot 3$	4.3	4.4	4.3	3.8
November	4.3	± 2	. 3	$4 \cdot 2$	4.2	4%	$\downarrow 1$	$3 \cdot 9$	3.5	3.1	± 6	2.3	$2 \cdot 5$	29	3.3	3.5	3.7	3.8	$4 \cdot 1$	$4 \cdot 1$	42	4.2	$4 \cdot 2$	$4 \cdot 3$	42	3.7
December	3.5	3.4	$3 \cdot 3$	$3 \cdot 3$	$3 \cdot 3$	$3 \cdot 3$	3.2	$3 \cdot 1$	$2 \cdot 7$	$2 \cdot 1$	1.5	1.5	1%	$2 \cdot 3$	2.7	$3 \cdot 1$	$3 \cdot 2$	3.2	3.2	$3 \cdot 3$	$3 \cdot 4$	$3 \cdot 4$	3.4	$3 \cdot 4$	3.5	$2 \cdot 9$
Means	3.6	33	$3 \cdot 3$	$3 \cdot 3$	$3 \cdot 3$	$3 \cdot 3$	32	$3 \cdot 1$	$2 \cdot 9$	$2 \cdot 1$	1.9	17	17	$2 \cdot 1$	$\because 5$	$2 \cdot 9$	3.1	32	$3 \cdot 3$	3.5	$3 \cdot 6$	$3 \cdot 7$	3.7	$3 \cdot 7$	3.7	3.0
Summer.																										
April	3.2	32	$3 \cdot 3$	$3 \cdot 3$	$3 \cdot 2$	$3 \cdot 1$	$3 \cdot 3$	$3 \cdot 3$	2.7	21	1.4	0.9	1.0	$1 \cdot 4$	1.8	$2 \cdot 4$	$2 \cdot 9$	3.0	$2 \cdot 9$	$3 \cdot 1$	$3 \cdot 1$	$3 \cdot 2$	$3 \cdot 3$	$3 \cdot 3$	$3 \cdot 2$	$2 \cdot 7$
May .	3.6	3.5	3.5	3.5	3.5	3.6	$3 \cdot 8$	$3 \cdot 3$	$2 \cdot 6$	$2 \cdot 1$	1.5	1.2	1.2	1.7	22	$2 \cdot 7$	$3 \cdot 2$	$3 \cdot 3$	3.4	3.4	3.6	36	3.7	3.6	3.5	3.0
June	3.5	3.6	3.5	35	3.5	$3 \cdot 6$	37	3.4	$3 \cdot 1$	25	2.1	$2 \cdot 1$	2.0	$2 \cdot 2$	$2 \cdot 8$	33	3.7	$3 \cdot 9$	3.8	3.7	3.7	3.7	3.7	3.7	3.5	$3 \cdot 3$
Jaly	3.7	3.7	37	3.7	36	3.6	3.8	3.6	$3 \cdot 1$	2.7	20	1.7	1.6	$1 \cdot 9$	$2 \cdot 4$	$2 \cdot 9$	$3 \cdot 3$	$3 \cdot 5$	$3 \cdot 5$	3.4	$3 \cdot 5$	3.6	3.5	3.6	$3 \cdot 6$	$3 \cdot 2$
August	35	35	3.5	34	3.6	3.7	$3 \cdot 8$	38	$3 \cdot 3$	$2 \cdot 2$	1.5	1.3	1.5	1.9	$2 \cdot 3$	2.8	$3 \cdot 1$	$3 \cdot 3$	3.2	$3 \cdot 2$	$3 \cdot 5$	3.4	3.5	3.5	$3 \cdot 6$	3.0
Septembar	$3 \cdot 1$	31	3.1	3.2	3.1	32	$3 \cdot 4$	3.5	3.0	2.0	1.1	1.1	0.8	1.5	$2 \cdot 3$	$2 \cdot 8$	$3 \cdot 1$	3.0	3.0	$3 \cdot 1$	$3 \cdot 1$	$3 \cdot 2$	3.3	$3 \cdot 4$	$3 \cdot 4$	27
Means	34	3.4	3.4	3.4	3.4	3.5	3.7	3.5	3.0	$2 \cdot 3$	1.6	$1 \cdot 4$	1.4	1.8	$2 \cdot 3$	$2 \cdot 8$	32	$3 \cdot 3$	$3 \cdot 3$	3.3	3.4	$3 \cdot 5$	3.5	3.5	3.5	3.0

Winter.

F. Tables of results at Kodaikānal.

Ho m	Mild	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	${ }^{10}$	20	21	22	${ }^{23}$	Mid.	Moana
w $0^{\prime}+\mathrm{t}$																										
Monthe.							,											,	,	,		,			,	
January	58.0	58.1	58.1	58\%	58.5	$58 \cdot 6$	58.8	58.6	58.9	58.3	57.6	$57 \cdot 6$	57.9	58.0	57-8	$57 \cdot 9$	57.8	57.9	579	$57 \cdot 9$	57.8	57.9	57.9	56.0)	580	$58 \cdot 1$
Fel rasry	57.8	58\%	$38 \cdot 1$	58.2	$58 \cdot 3$	58.4	58.5	58.7	556	$58 \cdot 1$	57.7	. 574	57.5	57.0	56.8	57.1	$57 \cdot 4$	57.7	58.0	58.0	58.0	58.0	581	58.1	58.0	$57 \cdot 9$
March	i8.5	58.5	68.5	$58 \cdot 6$	58.7	58.7	$58 \cdot 9$	59.1	58.4	57.6	57.1	$56 \cdot 9$	57\%	57.8	58.2	$58 \cdot 2$	57.9	57.9	58.0	$58 \cdot 4$	58.4	58.5	58.5	58.0	58.5	68.2
Dotober	69\%	$62 \cdot 0$	620	62.1	62.1	62\%	$62 \cdot 2$	61.9	61.7	62.0	$62 \cdot 3$	02.7	62.5	60\%	61.8	61.8	81.4	61.8	62.0	62.0	$69 \cdot 1$	62.2	62.1	62.0	6\% 0	62.0
November	60.6	69.6	$62 \cdot 6$	63.7	629	63.0	63.0	62.9	6\%6	62.7	83.0	$62 \cdot 9$	63.6	62.2	62.1	22.0	62.1	$62 \cdot 3$	62.2	62:3	62.4	$62 \cdot 4$	$62 \cdot 4$	624	$62 \cdot 4$	$62 \cdot 5$
Deacmber	63.0	63.0	629	63.0	$63 \cdot 1$	63.1	83.2	63.2	63.8	62.6	62.0	63.2	63.0	$62 \cdot 8$	$62 \cdot 4$	62:4	62.5	$62 \cdot 8$	62.9	$62 \cdot 9$	$62 \cdot 9$	63.0	63.	63.0	62.9	$62 \cdot 9$
$M_{\text {eans }}$	$60 \cdot 3$	60.4	60.4	6.5	$60 \cdot 6$	60.7	60.8	00.8	60.5	60.2	60.1	60.1	$60 \cdot 2$	60.0	59.9	59.9	$58 \cdot 9$	60.1	$60 \cdot 2$	${ }^{6} 02$	603	$60 \cdot 3$	C03	61.3	$60 \cdot 3$	$60 \cdot 3$
Summer.																										
April	58.7	58.6	58.7	58.7	58.8	$58 \cdot 8$	58.6	57.8	579	$58 \cdot 3$	58.6	59.0	59.7	$59 \cdot 8$	59.5	59.0	58.8	58.7	58 \%	58.8	590	59.0	$58 \cdot 9$	$58 \cdot 8$	58.8	58.8
May	$59 \cdot 3$	$59 \cdot 3$	59.3	59.3	59.2	593	E8.6	58.0	57.9	$58 \cdot 6$	59.5	60.5	00. 0	$60 \cdot 6$	59.9	$59 \cdot 4$	59.1	59.0	59.2	59.5	59.7	59.7	$59 \cdot 8$	59.5	59.4	59.4
June	59.9	59.8	59.7	59.\%	59.5	$59 \cdot 3$	58.8	58.5	58.8	59.5	60.3	$61 \cdot 3$	61.7	61.8	61.5	61.0	60.5	$60 \cdot 3$	$60 \cdot 2$	$60 \cdot 4$	$60 \cdot 5$	$60 \cdot 4$	$60 \cdot 3$	60%	60.0	60.2
July	60.0	59.8	59.7	59.7	59.7	59.6	59.4	58.6	58.7	59.5	60.4	$61^{\circ} 0$	81.4	$61 \cdot 3$	61.1	$60 \cdot 8$	60.4	$60 \cdot 2$	63.2	60.6	60.7	60.6	$60 \cdot 6$	$60 \cdot 6$	$60 \cdot 0$	60.2
Angast	60.8	60.7	60.6	$60 \cdot 6$	60.6	60.5	$59 \cdot 9$	58.7	58.7	69.4	60.5	61.2	61.8	81.9	617	61.4	60.9	60.7	60.8	61.0	61.0	${ }_{61} 10$	61.0	$60 \cdot 9$	$60 \cdot 8$	60.7
September	61.5	615	61.4	61.4	61.4	51.5	61.1	60.2	$59 \cdot 9$	$60 \cdot 6$	61.4	62.5	83.1	$62 \cdot 9$	$62 \cdot 4$	61.7	61.2	$6^{61} 1$	61.3	$61 \cdot 4$	61.6	61.6	61.6	61.5	61.4	61.5
Means	${ }^{60 \cdot 1)}$	60.0	$59 \cdot 9$	59.9	$59 \cdot 9$	59.8	59.4	58.7	58.7	$59 \cdot 3$	$60 \cdot 1$	$60 \cdot 9$	81.4	$61 \cdot 4$	61.0	$60 \cdot 6$	60.2	$60 \cdot 0$	60.0	$60 \cdot 3$	60.4	60.4	$60 \cdot 3$	60.2	$60 \cdot 1$	60.1

Diurnal Inequality of the Declination at Kodaikānal as deduced from the preceding Table.

Нопгя.	Mid.	1	12	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																									
1911 Months.	,	,	,			,	,	,	,	\prime	,	1 ,	,	,	,	,	,	,	,	,	,	,	,	,	,
January	- +0.1	0	0	$-0 \cdot 1$	-0.4	-0.5	-0.7	-0.8	-0.8	-0.2	$+0.5$	+0.5	± 02	$+0 \cdot 1$; $0 \cdot 3$	+0.2	$+0.3$	$+0.2$	$+0.3$	+0.2	+0.3	$+0 \cdot 2$	+0.2	+0.1	$+0 \cdot 1$
February	- +0.1	-0.1	-0.2	-0.3	-0.4	-0.5	-0.6	-0.8	-0.7	-02	+0.2	+0.5	+0'4	$+0 \cdot 9$	+1.0	+0.8	$+0.6$	$+0.2$	$-0 \cdot 1$	-0.1	$-0 \cdot 1$	-0.1	-0.2	-0.2	$-0 \cdot 1$
March -	- -0.3	-0.3	$-0 \cdot 3$	-0.4	-0.5	-0.5	-0.7	-0.8	-0.2	$+0.6$	$+1 \cdot 1$	$+1 \cdot 3$	$+0.7$	$+0.4$	0	0	+0.3	+0.3	+0.2	-0.8	$-0 \cdot 2$	-0.3	-0.3	-0.3	-0.3
October	- 0	0	0	-0.1	-0.1	-0.2	-0.2	$+0 \cdot 1$	$+0.3$	0	$-0 \cdot 3$	-0.7	-0.5	0	+0.2	$+0.4$	$+0.6$	+0.2	0	0	$-0 \cdot 1$	-0.2	-0.1	0	0
November	-0.1	-0.1	-0.1	-0.2	-0.4	-0.5	-0.5	-0.4	-0.1	-0.2	-0.5	-0.4	$-0 \cdot 1$	$+0.3$	+0.4	+0.5	$+0.4$	+0.2	+0.3	+0.2	+0.1	+0.1	+0.1	+0.1	+0.1
December	-0.1	-0.1	0	-0.1	$\mid-0.2$	-0.2	-0.3	-03	+0.1	+0.3	$+0.3$	-0.3	-0.1	+0.1	+0.5	+1) 5	+04	$+0 \cdot 1$	0	+0.1	0	-0.1	-0.1	-0.1	0
Means	- 0	-0.1	$\mid-0 \cdot 1$	-0.2	-0.3	-0.4	- 1,5	-0.5	$-0 \cdot 2$	+0.1	$+0 \cdot 2$	+ $+0 \cdot 2$	$+0.1$	$+{ }^{+3}$	+0.4	+0.4	+0.4	$+0 \cdot 2$	$+0 \cdot 1$	$+0 \cdot 1$	0	0	0	0	0

Summer.

Hourly, Means of Itorizuntal Force in C. G. S. Wnits (Corrected for temperature) at Korlaikanal from the selecterl quiet days in 1911.

Hoam.	${ }^{\text {sid }}$			3									N	No		${ }^{14}$		15	16			18	19	${ }^{20}$	${ }^{2}$	${ }^{22}$	${ }^{23}$	Mid.	Means.
$37000 \mathrm{cose}+$																													
Mothe.	γ	γ		γ		r	r	γ			γ			γ	γ			r	r		r	γ	r	γ	γ		7	γ	
January	190	188	488	188	188	483	188	193	502	03	${ }_{514}$	522	537	543	510	531		519	508		500	497	495	495	493	4.91	493	492	504
February	492	487	*8	490	49	490	491	493	509	69	516	${ }_{5} 21$	523	623	524	518		506	496		491	489	485	485	484	484	480	484	498
Mareh	481	491	493	494	495	495	495	ios	${ }^{3} 2$	22.51	541	555	560	${ }_{5} 5$	538	534	3.	515	508		501	500	497	495	494	49.	494	495	511
Oetober	509	51.	512	515	615	614	514	520	536	36	359	576	583	570	655	539	39	524	516		515	514	511	508	507	607	509	610	526
Norember	518	517	518	518	519	50	521	530			565	571	567	559	545		32	527	524	4	522	519	518	618	517	517	518	619	${ }_{530}$
Decomber	518	515	517	516	516	517	518	528	${ }_{5}+2$	42	538	573	570	556	63.	515	1550	508	51	1	517	620	519	618	518	518	519	520	627
Heass	503	501	502	204	50.	50,	505	512	525	25	512	553	557	5.51	539	527	6	617 !	611	11	508	507	50	503	502	502	502	03	516

Diurnal Inequality of the Horizontal Force at Kodaikēnal as deduced from the preceding Table.

Hours.	Mil.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																									
1911 Months.	γ	$\boldsymbol{\gamma}$	${ }^{\gamma}$	7	γ	γ	γ	γ	$\boldsymbol{\gamma}$	γ	γ	$\stackrel{\gamma}{ }$	γ	γ	γ	$\boldsymbol{\gamma}$	γ		7						
January	-14	-16	-18	-16	-16	-36	-16	-11	- 2	+10	+18	+33	$+39$	$+36$	$+27$	+15	+ 4	-4	-7	- 9	-9	-11	-13	-11	-12
February	6	-11	-10	-8	-9	-8	-7	0	+11	+18	+23	+25	+25	+28	+20	+8	-2	-7	-9	-13	-13	-14	-14	-18	-14
March	-20	-20	-18	-17	-16	-16	-16	-6	+11	+30	+44	+49	+42	+27	+13	+ 4	- 3	-10	-11	-14	-16	-17	-17	-17	-16
October	-17	-16	-14	-11	-11	-12	-12	- 6	$+10$	+23	+50	$+57$	+44	+29	+13	-2	-10	-11	-12	-15	-18	-19	-19	-17	-16
November	-14	-13		-12	-11	-10	-9	0	$+16$	$+35$	+41	+37	+29	+15	$+2$	- 3	- 6	-8	-11	-12	-12	-13	-13	-12	-11
i) ecember	. - 9	-12	-10	-11	-11	-10	- 9	$+1$	$+15$	+31	+46	+43	$+29$	+ 7	-12	-18	-16	-10	- 7	-8	-9	-9	-9	-8	-7
Means	-13	-15	-14	-12	-12	-12	-11	- .	$+9$	+26	$+37$	+41	+35	+23	+11	+ 1	- 5	-8	-9	-10	-13	-14	-14	-1.	-13

April	-17	-18	-15	-15	-17	-16	-16	-9	+11	+36	$+5{ }^{3}$	+58	+45	+25	+8	- 5	- 8	-8	-11	-14	-15	-15	-17	-16	-18
May	-13	-12	-12	-13	-15	-13	-12	- 5	+12	+33	+43	+49	+41	+2B	$+5$	-13	-19	-16	-12	-14	-14	-14	-11	-11	-10
June	-10	-8	-10	-10	-13	-10	-7	-4	+6	+21	+32	+40	+37	+24	+10	- 1	-12	-14	-13	-13	-12	-12	-11.	-11	- 9
Jaly	-14	-14	-10	-11	-12	-13	-12	-11	- 1	+17	+33	+43	+42	+29	+16	+ 1	-9	-14	-12	-12	-12	-11	-11	-11	-10
Augast	-15	-12	-13	-15	-15	-15	-14	-9	+ 4	+23	+38	+44	+40	+26	+11	$+2$	-4	-6	-8	-12	-12	-11	-11	-11	-8
September	-18	-18	-17	-17	-17	-17	-17	-11	$+7$	+31	+50	+58	+49	+34	+15	+ 1	-9	-13	-12	-14	-17	-17	-18	-17	-17
Means	-15	-14	-13	-14	-15	-14	-13	-8	+6	+27	+41	+49	$+42$	+27	+11	- 3	-10	-12	-11	-19	-14	-13	-13	-13	-12

Hourly Means of Vertical Force in C．G．S．Dnits（Corrected for temperature）at Kodaikānal from the selected quiet days in 1911.

Hours．	Mid		${ }^{2}$	3	4	5	6	7	${ }^{8}$	${ }^{\circ}$	10	11	Noon．	13	14	15	16	${ }^{17}$	18		20	${ }^{21}$	22	${ }^{23}$	mid．	Meant
02000 c．a．s．t Winter．																										
Mootbs．																										
January	508	505	504	506	505	505	504	505	505	505	501	497	492	486	484	487	482	493	499	500	499	501	502	504	503	499
Fobruary	512	510	511	511	511	511	511	509	509	509	511	510	509	594	498	497	502	503	507	508	510	511	510	510	513	509
March	516	516	516	51 i	516	516	515	517	518	5！6	513	508	507	508	577	508	510	512	514	512	513	514	515	515	516	513
October	565	565	566	567	567	566	567	563	560	551	546	545	547	551	553	558	561	562	564	365	565	566	568	588	569	560
Norember	572	372	572	571	571	571	572	571	570	566	563	3i4	564	581	562	563	361	563	566	567	568	568	569	570	571	567
December	580	578	578	577	577	577	577	575	570	663	556	551	553	567	564	570	573	573	574	574	575	576	576	577	578	571
${ }^{\text {Namans }}$	542	541	541	jı1	51	541	541	540	539	635	532	629	539	528	528	531	${ }^{533}$	${ }^{534}$	537	538	538	539	540	541	${ }_{5} 42$	536

	\％
	若
	㿯
汤发管尔尔莒	\％
	\％
	管
	\％
	\％
	\％
	\％
	趾
	艮
	和
	푸ํ
	\％
	范
言品嗐器器管	\％
	\％
	䟢
	\％
	7
	\％
令㗊品然咢茄	\％
	윰
	呂
	預
	咢

Diurnal Inequality of the Vertical Force at Kodaikänal as deduced from the preceding Table.

\#ours.	\dagger Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																									
$\begin{aligned} & 1911 \\ & \text { Months. } \end{aligned}$	y	γ	7	γ	γ	γ	7	γ	7	γ	γ	γ													
January	+7	+6	+5	+6	+6	+6	+5	+6	+6	+6	+2	-2	-7	-13	-15	-12	-7	--6	0	+1	0	+2	+3	+5	+4
Februaly	+4	+2	+3	+3	+3	+3	+3	+1	+1	+1	+3	+2	+1	-4	-10	-11	-6	-5	-1	0	+2	+3	+2	+2	+4
March .	+3	+3	+3	+3	+3	+3	+2	+4	+5	+3	0	- 5	-8	-5	-6	-5	-3	-1	+1	-1	0	+1	+2	+2	+3
October	+5	+5	+6	+7	+7	+6	+7	+3	0	-9	-14	-15	-13	-9	-7	-2	+1	+2	+4	+5	+5	+6	+8	+	+9
Norember	+5	+	+5	+4	+4	+4	+5	+4	+3	-1	-4	-3	-3	-8	-5	-4	-6	-4	-1	0	+1	+1	+2	+3	+4
December	+8	+7	+7	+6	+6	+6	+6	+4	-1	-8	-16	-20	-18	-14	-7	--1	+2	+	+3	+3	$+4$	+5	+5	+6	+7
Means	+6	+5	$+5$	+5	+5	+5	+5	+4	+3	-1	-4	-7	-7	-8	-8	-5	-3	-2	+1	+2	+2	+3	+4	+ 5	+6

Hourly Means of the Dipat determined at Koduikunal from the selected quiet days in 1911.

\#	Mid.	1	2	3	4	5	${ }^{6}$	7	8	9	10	11	Noun.	13	14	15	16	17	18	19	20	21	22	3	mid.	Meone
$3^{\circ}+\quad$ Winter.																										
Monthe.																										
January	$49 \cdot 5$	49.4	193	49.4	49.4	49.4	493	49.4	493	49.2	48.8	48.1	47.9	47.3	47.2	476	$48 \cdot 1$	48.2	$48 \cdot 8$	489	48.8	490	49.1	$49 \cdot 3$	$49 \cdot 2$	48.8
Februsry	60.0	498	$49 \cdot 9$	$49 \cdot 9$	49.9	499	49.9	497	49.6	$49 \cdot 6$	497	49.6	49.5	49.1	486	$48 \cdot 5$	49.1	492	49.6	49.7	49.9	50.0	$49 \cdot 9$	$49 \cdot 9$	$50 \cdot 0$	49.6
March	51.4	30.6	50-4	50.4	50.3	503	50.3	$50 \cdot 4$	50.4	50.1	$49 \cdot 7$	43.2	$48 \cdot 2$	49:4	493	49.5	49.7	49.9	50.1	50.0	50.1	50.2	$50 \cdot 3$	$50 \cdot 3$	50.3	50.0
October	54.7	54.7	54.8	$5 \downarrow 9$	54.9	54.8	54'S	54 5	54.1	53.1	53.6	$52 \cdot 4$	52.7	53.2	53.4	54.0	5 ± 3	$54 \cdot 4$	54.6	54.7	54.7	54.8	55.0	$55 \cdot 1$	55.1	54.2
Novembor	$55 \cdot 3$	553	553	55.2	55.	55.2	20.3	55.1	55.0	565	51.3	54.3	54.3	54.1	54.3	54.4	54.3	54.5	54.8	54,9	54.9	55.0	550	55.1	55.2	548
Decembe:	56.0	55.8	55.9	55.8	55.8	55.8	558	55.5	55.0	4.2	53.4	53.1	53.3	53.8	54.6	55.2	55.4	55.4	55.5	$55 \cdot 5$	55.6	55.7	55.7	55.8	55-8	55.2
Means	52.7	526	52.6	52\%	50.6	53.6	52\% 6	52.4	52.2	51.8	514	51.2	51.2	51.2	51.2	51.5	51.8	51.9	52.2	52:3	52,3	$52 \cdot 5$	52.5	52.6	52.6	591
Summer.																										
April .	51.5	51.4	51.5	51.4	51.4	51.5	51.5	51.4	507	5101	49.6	$48 \cdot 0$	$49 \cdot 1$	$49 \cdot 4$	497.	50.2	50.6	50.7	$50 \cdot 6$	50.7	$50 \cdot 9$	51.0	51.0	$51 \cdot 1$	$51 \cdot 1$	50.7
May	51.6	51.5	51.5	51.4	31'5	51.6	51.7	51.5	50.8	50.0	49.6	$48 \cdot 0$	$49 \cdot 3$	49.8	50.5	51.2	51.6	51.5	51.2	312	51.3	51.4	51.4	$51 \cdot 5$	516	51.0
Jane	$52 \cdot 1$	$52 \cdot 2$	$5 \cdot 1$	5\%0	58.1	59,3	$52 \cdot 4$	52.4	52.1	51.8	51.5	51.5	51.6	51.5	51.6	51.8	52.0	52.1	52.1	52:1	$53 \cdot 1$	$5_{2} 2.1$	$5 \cdot 2$	62.2	52.2	52.0
July	52.6	$52 \cdot 6$	$5 \cdots 7$	52.7	52.6	58.7	$52 \cdot \theta$	5\%7	59.1	51.6	51.2	51.0	51.0	51.4	51.7	$52 \cdot 1$	52.4	52.3	$52 \cdot 4$	52.2	$52 \cdot 3$	-2.4	52.5	22.6	52.6	52.2
August	53.4	535	53.3	53.2	63.3	53.4	53.7	$53 \cdot 6$	$52 \cdot 9$	52.0	51.1	50.9	$50 \cdot 9$	51:3	51.9	$52 \cdot 6$	52.8	52.8	52.7	53.0	$53 \cdot 1$	$53 \cdot 3$	53.3	53.4	53.4	52.7
September	53.9	53.8	53.9	33.8	33.8	53.8	54.2	54.0	53.0	51.9	51.0	50.3	50.5	$51 \cdot 1$	51.8	52.	53.0	$53 \cdot 1$	53.3	53.4	53.4	58.6	53.7	53.8	53.9	52.9
Mears	53. 5	52\%	53.3	53.4	53	5	52.7	52.6	31.9	51.2	50.7	$50 \cdot 3$	50.4	50.8	$51 \cdot 2$	51.7	52.1	$52 \cdot 1$	52.1	52.1	53?	52.3	52.4	52.4	$52 \cdot 5$	9

Diurnal Inequality of the Dip at Kodaikànal as deluced from the preceding Table.

Hoara.	Mid.	1	2	3		5		7	8	9	10	11	Noon.	13	14	15	16	17	${ }^{18}$	19	${ }^{20}$	${ }^{21}$	22	${ }^{23}$	Mı.
Winter.																									
$\begin{gathered} 1911 \\ \text { Months. } \end{gathered}$																									
January	+0.7	+0.6	+0.5	+0.6	+0.6	+0.6	+0.5	+0.6	$+0 \cdot 5$	$+0.4$	0	-0.4	-0.9	-15	-1.6	-12	-0.7	-0.6	0	$+0.1$	0	+0.2	+0.3	+0.5	+0.4
Fobraary	+0.4	+0.2	+0.3	+0.3	+0.3	+0.3	+0.3	+0.1	0	0	$+0 \cdot 1$	0	-0.1	-0.5	-1.0	-1.1	-0.5	-0.4	0	+0.1	$+0.3$	+04	+0.3	+0.3	+0.4
March	+0.4	+0.4	+0.4	$+0.4$	+0.3	+0.3	+0.3	$+0.4$	+0.4	+0.1	-0.3		-0.8	-0.6	-0.7	-0.5	-6.3	-0.1	$+0.1$	0	+0.1	+0.2	+0.3	$+0 \cdot 3$	$+0.3$
Detober.	+05	+0.5	+0.6	+0.7	+0.7	+0.6	+0.7	+0.3	-0.1	-1.1	-1.6	-1.8	-1.5	-10	-0.8	-0.2	+0.1	$+0.2$	+0.4	+0.5	+0;	+0.6	+0.8	+0.9	+0.9
November	+0.5	+0.5	+0.5	+0.4	+0.4	+0.4	+0.5	+0.3	+0.2	-0.3	-0.6	-0.5	-0.5	-0.7	-0.5	-0.4	-0.5	-0.3	0	+0.1	+0.1	+0.2	+0.2	+0.3	+0.4
December	+0.8	+0.7	+0.7	+0.6	+0.6	+0.6	+0.6	+0.3	-0.2	-1.0	-1.8	-2.1	-1.9	-14	-0.6	0	$+0.2$	+0.2	$+0.3$	$+0 \cdot 3$	+0.4	+0.5	+0.5	+0.6	+0.6
$\mathrm{Meaans}^{\text {a }}$	+0.6	+1)5	+0.5	+0.5	+0.5	+0.5	+0.5	+0.3	$+0.1$	-0.3	-0.7	-0.9	-0.8	-0.9	-0.9	-0.6	-0.3	-0.2	+0.1	$+0.2$	+0.2	+0.4	+0.4	+0.5	+0.5

Summer.																									
Aprid	+0.8	+0.7	$+0.8$	+0.7	$+0.7$	+0.8	+0.8	$+0.7$	0	-0.6	-1.1	-1.7	-1.6	-1.3	-1.0	-0.5	-0.1	0	-0.1	0	+0.2	+0.3	+0.3	+0.4	+0.4
May	+0.6	+4.5	+0.5	+0.4	+0-s	$+0.6$	+0.7	+0.5	-0.2	-1.0	-14	-2.0	-1.7	-1.2	-0.5	+0.2	+0.6	+0.5	+0.2	+0.2	$+0 \cdot 3$	+0.4	+0.4	+0.5	+0.6
June	+0.1	+0.2	$+0 \cdot 1$	0	+0.1	+0.3	+0.4	+0.4	+0.1	-0.2	-0:	-0.5	-0.4	-0.5	-0.4	-0.2	0	+0.1	$+0.1$	+0.1	$+0 \cdot 1$	+0.1	+0.2	+0.3	+0.2
Jaly	+0.4	+0.4	+0.5	+0.5	+0.4	+0.5	+0.7	+0. 5	-0.1	-0.6	-1.0	-1.2	-1.2	-0.8	-0.5	-0.1	+0.2	+0.1	+0.2	0	+0.1	+0.2	+0.3	+0.4	+0.4
August.	+0.7	+0.8	+0.6	+0.5	+0.6	+ 7	+1.0	+0.3	+0.2	-0.7	-1.6	-1.8	-1.8	-1.4	-0.8	-0.1	+0.1	+0.1	0	f0.3	+0.4	+0.6	+0.6	+0.7	$+0.7$
Septernber	+1.0	+0.9	+1.0	+09	+0.9	+119	+13	$+1 \cdot 1$	$+1$	- 0	-1.9	-2.8	-2.4	-1.8	-1.1	0.4	+0:1	+0.2	+0.4	+0.5	+0.5	+0.7	+0.8	+09	$+1.0$
Neans	+0.6	+0.6	+0.6	+0.5	$0 \cdot 6$	$0 \cdot 7$	$0 \cdot 8$	+0.7	0	-0.7	-1.	-1.8	-1.5	-1.1	-0	-0.2	+0.2	$+4.2$	+0.2	+02	+0	$+0.4$	+0.5	+0.5	+0\%

G．－Abstract showing approximate magnetic values at stations observed at by No． 18 Party during season 1911－12．

Detall Survey Stations．

¢		Latitude．	Longitade．	Dip．	Doolination．	Horizontal	
$\begin{aligned} & \text {.ib } \\ & \text {. } \end{aligned}$			－，＂	－，	－	c．G．s．	
274D	Hirapur	19480	$79 \quad 6 \quad 50$	$25 \quad 26$	W． $0 \quad 15$	$0 \cdot 3732$	
275 D	Ergohan	$\begin{array}{llll}19 & 41 & 10\end{array}$	$79 \quad 0 \quad 50$	$25 \quad 2$	＂ 045	$0 \cdot 3726$	
276D	Marnri Guda	$\begin{array}{llll}19 & 36 & 0\end{array}$	$\begin{array}{lll}78 & 37 & 50\end{array}$	$25 \quad 17$	E． 09	$0 \cdot 3646$	
277D	Sonepali	$\begin{array}{lll}19 & 24 & 10\end{array}$	$\begin{array}{llll}78 & 34 & 0\end{array}$	$23 \quad 28$	， $0 \quad 19$	0．3764	
278D	Omri	$\begin{array}{lll}19 & 26 & 20\end{array}$	$\begin{array}{lll}78 & 45 & 20\end{array}$	240	， 10	0.3794	
279D	Omri	$\begin{array}{lll}19 & 31 & 50\end{array}$	$78 \quad 55$	$25 \quad 53$	＂ 431	0.3682	
280D	Indapa：	$\begin{array}{lll}19 & 28 & 10\end{array}$	$79 \quad 9 \quad 10$	2438	W． $0 \quad 2$	$0 \cdot 3712$	
281 D	Karki	$\begin{array}{lll}19 & 36 & 10\end{array}$	$\begin{array}{lll}79 & 13 & 0\end{array}$	$24 \quad 10$	E． 04	0.3704	
2825	Temburwai	$\begin{array}{lll}19 & 41 & 20\end{array}$	79 21－0	$24 \quad 29$	1． 017	0.3742	
283D	Kanargao	$\begin{array}{lll}19 & 23 & 20\end{array}$	79	$24 \quad 35$	， 0 5	0.3734	
284D	Ginejari	$\begin{array}{lll}19 & 12 & 10\end{array}$	$\begin{array}{llll}79 & 13 & 50\end{array}$	$23 \quad 52$	\％ 002	0.3734	
285D	Rali	$18 \quad 58 \quad 0$	$\begin{array}{llll}79 & 19 & 40\end{array}$	$23 \quad 20$	W． 06	$0 \cdot 3755$	
286D	Kâsipet	$\begin{array}{llll}18 & 57 & 10\end{array}$	$79 \quad 6 \quad 40$	2510	， 0 30	$0 \cdot 3695$	
287 D	Kohal	$\begin{array}{lll}19 & 10 & 20\end{array}$	$\begin{array}{llll}78 & 57 & 60\end{array}$	230	E． 05	$0 \cdot 3745$	
288D	Birsaipet	$\begin{array}{lll}19 & 16 & 40\end{array}$	$\begin{array}{llll}78 & 48 & 30\end{array}$	$23 \quad 32$	， 023	$0 \cdot 372 \overline{5}$	$\dot{\square}$
289D	Itkeal	$\begin{array}{lll}19 & 13 & 50\end{array}$	$\begin{array}{llll}78 & 37 & 0\end{array}$	$25 \quad 1$	W． 12	$0 \cdot 3830$	\％
290D	Yellagadpa	$19 \quad 2 \quad 50$	$\begin{array}{llll}78 & 44 & 10\end{array}$	$23 \quad 24$	， 017	0.3735	号
291D	Mamda	$\begin{array}{lll}19 & 4 & 20\end{array}$	$78 \quad 3140$	2328	E． $0 \quad 12$	$0 \cdot 3725$	8°
292D	Warasakota	$19 \quad 54 \quad 50$	$\begin{array}{llll}78 & 32 & 20\end{array}$	23 I	\％ $0 \quad 17$	$0 \cdot 3765$	㽞
293D	Koreth	$\begin{array}{lll}18 & 49 & 10\end{array}$	$78 \quad 4230$	$23 \quad 27$	＂ 011	0.3748	8
294D	Kotupet	$\begin{array}{lll}18 & 46 & 40\end{array}$	$\begin{array}{llll}79 & 12 & 10\end{array}$	$22 \quad 36$	1 $0 \quad 35$	0.3746	右
295D	Ramgundam	$\begin{array}{lll}18 & 47 & 40\end{array}$	$\begin{array}{llll}79 & 27 & 10\end{array}$	2263	W． 04	0.3691	嶌
290D	Fagampet	$\begin{array}{llll}18 & 38 & 0\end{array}$	79	23 3	， $0 \quad 19$	0.3813	$\frac{\pi}{4}$
297D	Y Cl ldevee	$\begin{array}{llll}18 & 27 & 10\end{array}$	$\begin{array}{llll}79 & 15 & 10\end{array}$	2230	， 116	$0 \cdot 3800$	
298D	Elganial	$\begin{array}{lll}18 & 25 & 30\end{array}$	$\begin{array}{llll}79 & 3 & 10\end{array}$	2236	E． 0021	$0 \cdot 3722$	
299D	Korem	$18 \quad 31 \quad 60$	$78 \quad 5440$	22	＂ $0 \quad 25$	$0 \cdot 3743$	
300 D	Roodrangee	$\begin{array}{lll}18 & 37 & 50\end{array}$	$78 \quad 41 \begin{array}{lll}30\end{array}$	$22 \quad 34$	W． 020	$0 \cdot 3729$	
301 D	Bimpul	$\begin{array}{llll}18 & 42 & 10\end{array}$	$\begin{array}{llll}78 & 27 & 10\end{array}$	$24 \quad 18$	， $0 \quad 9$	$0 \cdot 3744$	
902D	Cheemulpully	183050	$78 \quad 3140$	$22 \quad 35$	＂ 07	$0 \cdot 3767$	
313 D	Sircilla	$18 \quad 22 \quad 40$	8 48 20	22.28	＂ 922	0.3791	
304D	Vemalkonda	$\begin{array}{lll}17 & 21 & 10\end{array}$	$\begin{array}{lll}79 & 7 & 50\end{array}$	$19 \quad 52$	$\cdots \quad 0 \quad 10$	03796	
305 D	Ibrahimpatan	$\begin{array}{lll}17 & 12 & 30\end{array}$	$\begin{array}{llll}78 & 37 & 40\end{array}$	1926	， $0 \quad 20$	$0 \cdot 3781$	
306D	Klampel	223720	i8 310	$30 \quad 47$	E． 15	$0 \cdot 3637$	
307 D	Nimkliera	$\begin{array}{lll}22 & 31 & 40\end{array}$	$76 \quad 19 \quad 20$	$30 \quad 17$	＂ $0 \quad 48$	$0 \cdot 3662$	
308D	Kantaphor	$\begin{array}{llll}22 & 34 & 40\end{array}$	78 33 60	$30 \quad 54$	， 0 31	$0 \cdot 3860$	
909V	Ajnat	223330	$76 \quad 50 \quad 20$	$30 \quad 22$	1 063	$0 \cdot 3650$	
310D	Harangaon	22450	$76 \quad 58 \quad 0$	2940	， 135	$0 \cdot 3670$	
311D	Daulatpur	$22 \quad 63 \quad 30$	$76 \quad 55 \quad 50$	3134	， 124	$0 \cdot 3863$	

Abstract showing approximate magnetic values al stations obsorved at by No． 18 Party during season 1911－12－continued．

Detail Sulvey Stations－continued．

		Letitade．	Longitade．	Dip．	Deolination．	Horizontal Force．	
$\stackrel{\rightharpoonup}{\text { at }}$		－＇＂	－，＂	－，	－．	c．a．s．	
912D	Ashta	23130	$\begin{array}{lll}76 & 43 & 40\end{array}$	3112	E． 047	$0 \cdot 3677$	
313D	Tappa	$22 \quad 60 \quad 50$	$\begin{array}{lll}76 & 28 & 40\end{array}$	319	， $0 \quad 68$	0.3640	
314D	Sonkach	$22 \quad 58 \quad 40$	$\begin{array}{lll}76 & 20 & 10\end{array}$	$31 \quad 15$	＂ 057	0.3615	
315D	Dewas	22580	$\begin{array}{lll}76 & 3 & 40\end{array}$	3115	1） $0 \quad 32$	0.3572	
316D	Manglia	$22 \quad 490$	$75 \quad 55 \quad 30$	$30 \quad 23$	＂ 117	$0 \cdot 3653$	
317D	Sewangaon	$21 \quad 210$	$\begin{array}{lll}77 & 57 & 0\end{array}$	$26 \quad 50$	， 020	0.3703	
318D	Ashti	211220	781110	$27 \quad 57$	＂ 11	0．3680	
319D	Karanja	$21 \quad 100$	$78 \quad 24 \quad 40$	28	＂ 0 45	$0 \cdot 3707$	
320D	Cbikbli	21550	$\begin{array}{llll}78 & 36 & 30\end{array}$	$27 \quad 28$	， 0 O 41	$0 \cdot 3736$	
321 D	Bāzārgaon	2180	78850	$27 \quad 42$	＂ 0061	0.3582	
322D	Kalmeshwar	$21 \quad 14 \quad 0$	78	$27 \quad 34$	， $0 \quad 15$	0.3700	
323D	Bhoogaon	2150	$79 \quad 20 \quad 10$	$27 \quad 24$	\％ $0 \quad 29$	$0 \cdot 3704$	
324D	Panchgaon	2110	79	2730	， 0 O 34	$0 \cdot 3699$	
325 D	Gûmgaon	$20 \quad 69 \quad 20$	$\begin{array}{lll}79 & 1 & 0\end{array}$	$27 \quad 36$	， $0 \quad 10$	$0 \cdot 3770$	
326D	Sindi	204840	7885310	$26 \quad 56$	＂ 0012	0.3702	\pm
327 D	Hingni	$20 \quad 55 \quad 0$	788330	$27 \quad 46$	＂ 0 O 11	$0 \cdot 3689$	5
328D	Anji	$20 \quad 50 \quad 40$	$\begin{array}{llll}78 & 32 & 20\end{array}$	$27 \quad 21$	－ $0 \quad 37$	0．3702	\pm
329D	Kinhäla	$20 \quad 54 \quad 40$	$\begin{array}{lll}78 & 22 & 0\end{array}$	$27 \quad 54$	＂ $0 \quad 23$	$0 \cdot 36.11$	茴
330D	Arvi	$20 \quad 59 \quad 50$	$\begin{array}{llll}78 & 13 & 10\end{array}$	$27 \quad 42$	， 0034	0.3681	墻
331D	Rasūlābād	$20 \quad 46 \quad 10$	$\begin{array}{llll}78 & 21 & 50\end{array}$	25 61	＂ 029	$0 \cdot 3666$	厚
332 D	Chāndur	$20 \quad 48 \quad 20$	$77 \quad 59 \quad 10$	$28 \quad 12$	．， 06	0.3678	号
333 D	Dhinmak	$\begin{array}{llll}20 & 36 & 0\end{array}$	$\begin{array}{llll}77 & 57 & 20\end{array}$	$26 \quad 20$	， 0017	$0 \cdot 3675$	哥
334D	Babūlgaon	$20 \quad 33 \quad 30$	78	$26 \quad 41$	$\cdots \quad 0 \quad 37$	$0 \cdot 3676$	面
935D	Bhidi	$20 \quad 34 \quad 30$	78824	$26 \quad 20$	1， $0 \quad 42$	0．3702	
336 D	Khangaon	$20 \quad 29 \quad 30$	$\begin{array}{llll}78 & 33 & 0\end{array}$	$25 \quad 51$	＂ 1032	0.3702	
337D	Waigaon	$\begin{array}{llll}20 & 38 & 10\end{array}$	78836	$27 \quad 21$	＂ $0 \quad 41$	$0 \cdot 3700$	
338 D	Hinganghat	20330	$\begin{array}{llll}78 & 49 & 10\end{array}$	2641	， 0 0 31	0.3771	
939 D	Kore	$20 \quad 30 \quad 40$	$\begin{array}{lll}79 & 5 & 50\end{array}$	273	W． 0 2	0.9697	
340 D	Girar	$\begin{array}{lll}20 & 39 & 20\end{array}$	$\begin{array}{lll}79 & 6 & 40\end{array}$	$26 \quad 25$	E． $0 \quad 22$	$0 \cdot 3724$	
341D	Nand	$20 \quad 39 \quad 0$	$\begin{array}{llll}79 & 17 & 50\end{array}$	$26 \quad 39$	－ $0 \quad 30$	0.3719	
342D	Amgnon ．．	$20 \quad 30 \quad 10$	$\begin{array}{llll}79 & 9 & 50\end{array}$	$26 \quad 39$	＂ $0 \quad \underline{2}$	03711	
343D	Gondia	$21 \quad 27 \quad 30$	$\begin{array}{llll}* 0 & 11 & 50\end{array}$	$28 \quad 22$	＂ 035	03701	
344D	Tumaar	$21 \quad 15 \quad 60$	$\begin{array}{llll}80 & 17 & 50\end{array}$	$28 \quad 4$	， 0031	0．3721	
946D	Dulee	21540	$\begin{array}{llll}80 & 13 & 20\end{array}$	$27 \quad 39$	． 025	$0 \cdot 3717$	
346 D	Shirpur	21480	$80 \quad 2830$	$27 \quad 26$	＂ $0 \quad 26$	$0 \cdot 3727$	
947D	Pathri	21560	A0 $41 \begin{array}{lll}41 & 20\end{array}$	$27 \quad 48$	， 033	03719	
348 D	Chipah ．	$21 \quad 10 \quad 20$	$80 \quad 52 \quad 20$	$27 \quad 54$	＂ 0 35	0.3718	

Abstract showing approrimate magnetic values at stations observed at by No. 18 Parly during season 1911-12-continued.

Detail Sutvey Stations-concluded.

Re-observed Field Stations.

Repeat Stitions.

Abstract showing approximate magnetic vabues at stations observed at by No. 18 Party during seazon 1911-12-continued.

Repeat Stations-continued.

Abstract showing approximate magnetic values at stations observed at by No． 18 Party during season 1911－12－－concluded．

Repeat Stations－concluded．

	Name of Stations．		Latitade．	Longitade．	Dip．	Deolination．	Horizontal Force．	Remaris．
			－＂\quad	－，＂		－，	c．G．s．	
975	Myitkyins	．	$25 \quad 23 \quad 20$	$97 \quad 24 \quad 10$	$38 \quad 17$	E． 119	$0 \cdot 3622$	
977	Ehāmo	．	$24 \quad 15 \quad 30$	$\begin{array}{llll}97 & 13 & 10\end{array}$	3347	＂ $0 \quad 39$	0.3736	家
1068	Prome	－	$\begin{array}{lll}18 & 49 & 40\end{array}$	$\begin{array}{llll}95 & 13 & 20\end{array}$	$22 \quad 48$	＂ 011	$0 \cdot 3886$	安品
1071	Bassein	－．	$\begin{array}{lll}16 & 46 & 20\end{array}$	$\begin{array}{llll}94 & 44 & 30\end{array}$	$18 \quad 12$	－ 07	0.3926	㦳
1195	Moulmein		$\begin{array}{lll}16 & 29 & 40\end{array}$	$\begin{array}{llll}97 & 37 & 30\end{array}$	1740	\％ $0 \quad 17$	$0 \cdot 3940$	$\stackrel{\text { ¢ }}{\square}$
1338	Barmer	－．	$\begin{array}{llll}25 & 44 & 40\end{array}$	$\begin{array}{lll}71 & 26 & 40\end{array}$	3638	， 149	$0 \cdot 3433$	工

Note．－The above values of Dip，Declination and Horizontal Force are uncorrected for seoular change， djurnal variation，instrumeutal differences，etc．，and are to be considered preliminary values only．

All Longitudes are referable to that of the Madras Obser ratory taken at the value $80^{\circ} 14^{\prime} 47^{\prime \prime}$ east from Greenwich．

PART VII.-REPRODUCING OFFICES.

PHOTO.-LITHO. OFFICE.

By Captain C. M. Thompbon, I.A.
Photo-Branch.-The outturn of negatives with the cost per 100 square inches for the last three years was as follows :-

No changes of importance have been made in the methods or formulx of the negative section. The improvement due to the introduction of iron base cameras, iron stands and Cooke lenses has been well maintained, and a still further improvement has been made by the use of office made silver nitrate. This chemical manufactured locally out of silver recovered from our residue tanks, is cheaper than that obtained from home and this enables the intensifying baths to be kept up to full strength at less cost. The quality of the negatives has improved owing to the greater density obtained in the stronger baths. Although the above table shows a large increase in outturn, the cost of the English silver nitrate used has decreased by Rs. 54.0.

The large Zeiss " Apochromat Planar" lens and prism indented for in 1906 arrived. The total cost of the lens and prism was £521. The lens has a focal length of 1700 mm . and works at an aperture of $\frac{\mathrm{F}}{125 \mathrm{~s}}$. Pending the conversion of No. 1 camera into an iron base camera with an iron stand, it has been found impossible to employ this lens owing to the vibration of the present apparatus. The camera and stand should be ready by December.

A glass plate polishing machine has been installed this year. This should effect a saving, as it will be possible to repolish tarnished negative glasses which would be otherwise useless.

The outturns of the Retouching, Helio and Vandyke, and Photo. Engraving Sections for the last three years were as follows:-

Retouching Section.

	Year.				Black plates.	Colour plates.	Total.
1909-10	.				1,121	2,267	3,388
1910-11				-	896	2,2:9	3,125
1911-12	-	.	-	-	1,170	2,841	4,011

Belio and Pandyke Section.

Photo-Engraving Section.

Year.			No. of square inches.	Half-tone pulls.	Line pulls.	Total.
1909-10	-	-	15,091	114,846	68,390	183,236
19]0-11		-	9,206	102,900	111,3c0	214,200
1911-12	-	-	13,223	60,056	437,820	497,876

The value of the work of Photo-Engraving Section exceeded the cost by Rs. 2,88t-14-2.

Litho Branch.-The outturns for the last three years were as follows:-

It will be noticed that, while the outturn of pulls in the Litho. Section is practically the same as in 1909-10, the outturn of negatives and plates has increased materially. This is due to the greater use now made of blue prints and reductions for fair drawing by which much labour is saved in circle and party offices.

An offset machine for printing from rubber has been recently installed, but, pending the arrival of a proving press from home, it has only been used for direct printing. The offset method of printing it is hoped will offer material advantages in the printing of our 1 -inch standard sheets, but as yet no detinite opinion on this point can be given.

Type-Printing Section.-The outturns for the last three years were as follows:-

The type-printing outturn shows a decrease owing to the fact that the work of printing the "Professional" forms has been transferred to the Dehra Dün Office, also that the blocks and weather charts previously printed in the Type-Printing Section are now printed in the Photo-Engraving Section.

General.-The general increase of work has shown that the space allotted to the Photo.-Litho Office is now inadequate. More room is required for nearly every branch, especially for cameras in the Studio for the Helio Section and for negative and paper storage.

A marked advance has been made in the rate of progress of the publication of standard sheets. The first modern standard sheets in colours took some 8 months to publish. This time has now been considerably reduced and some sheets have recently been published within three months of the date of their receipt at head-quarters. This increase in speed is due to all hands, notably the men in the duffing section, becoming more expert in their duties.

The cost of the office and the value of the total office outturn at cost rates for the past three years were as follows:-

- This decrease in the cost of the office is almost entirely due to reductious in expenditure on establishments.

APPENDIX I.

SYNOPSIS OF GEODETIC WORK IN THE VICINITY OF DEHRA DUN.

(Vide Map 32.)

LIST OF Stations.

LA TITUDE STATIONS.

- Beyond the limits of the map.

AZIMOTH STATIONS.

Name of station	Station observed	Geodelic Azinnth	Observed Azimnth	A-G	($\mathrm{A}-\mathrm{G}$) col. Φ $=$ Denertion in Prime Vertical
		- , "	- ,	v	"
Bnnog	Amsot	$71 \quad 6 \quad 10 \cdot 3$	715647	-15.6	E 265
Dehra Dun Obsy. (old)	Banog	$\begin{array}{lll}165 & 11 & 11 \cdot 8\end{array}$	$165 \quad 10 \quad 58.5$	$-13 \cdot 3$, 22.7
Mussoo ee Dome Obsy.	$\left\{\begin{array}{l} \text { Dehra Obsy. } \\ \text { Cole's Satel- } \\ \text { lite Station. } \end{array}\right.$	$\begin{array}{lll}6 & 17 & 36.7\end{array}$	$\begin{array}{lll}6 & 17 & 20 \cdot 1\end{array}$	-16.6	, 28.2
Nag Tibba*	Mussooree Eagle's Nest	$\begin{array}{lll}32 & 58 & 55 \cdot 5\end{array}$	$32 \quad 58 \quad 41 \cdot 6$	-139	, 23.5

* Deyond tho llmits of the map.

LONGITUDE STATION.

PENDULUM STATIONS.

Name of eftation	Oberrved g		$g \frac{9 h}{4 \pi}$	Orographical Correction	Value $n t$ Sce love $g_{0}{ }^{\circ *}$	${ }_{\text {c }}^{\text {c }}$ t	$g_{0}^{\prime \prime}{ }^{\prime \prime}-\gamma_{0}$
Asarori	970.059	+0.231	-0.087	+0.002	979-205	979356	-0.151
Delira Dun	979.063	+0.210	-0.079	+0004	979198	979:363	-0.165
Fatehpur	979147	+0.132	-0.04)	+0.003	974-233	979:371	-0.138
Hardwar	979.123	+0.089	-0.033	+0.012	979.180	979.333	-0.153
Kalsi	979-131	+0.158	-0.059	+0.011	979.241	979.378	-0.137
Mohan	979109	$+0.155$	-0.058	+0.003	979.209	979.351	-0.142
Mussooree, Camel's Mack	978.793	$+0.649$	-0.243	+0.026	970-225	979 373	-0.148
Mussooree (Dunsevorick)	978776	+0.668	-0.251	+0.026	579.219	979'373	n-0.154
Nojli	979-143	+0.082	-0.031	+0.001	979195	979.329	-0.194
Rajpur	$979 \cdot 002$	+0.311	-0.117	$+0.010$	$979 \cdot 206$	979.369	-0.163
Roorkee	979.129	+0.081	-0.030	+0.001	979.181	979.327	-0.146

[^4]
APPENDIX II.

LIST OF SURVEY OF INDIA PUBLICATIONS.

Poblications marked ean be obtained from the Superintendent of the Trigonometrical Survey, Dehra Dūn.

$$
\begin{aligned}
& " \quad "+\quad \text { " " ", the Officer in charge, Map Record \& Issue Ofice, 13, Wood Street, Calcutta. } \\
& " \quad "+\quad \text { " } \quad \text { " } \quad \text { " } \quad \text { " the Officer in charge, Matlrematical Instrument Office, low, Wood Street, Calcutta. } \\
& \text { Remaining publications " } " \text { e either" out of "print or are not available for issue. }
\end{aligned}
$$

ACCOUNT OF THE OPERATIONS OF THE GREAT TRIGONOMETRICAL SURVEY OF INDIA

Price Rupees $10-8$ per volume, except vhere otherwise stated.

Volume I. The Standards of Measure and the Base-Lines, also an Introductory Account of the early Operations of the Survey, during the period of 1800-1830. By Colonel.J. T. Walker, R.E., F.R.S., etc., etc., Superintendent of the Survey. Dehra Dūn, 1870 (out of print).
Do. II. History and General Description of the Principul Triangulation, and of its Reduction. By Colonel J. T. Waiker, C.B., R.E., F.R.S., etc., etc., Surveyor-General of India and Superintendent of the Survey, and his Assistants. Dehra Dūn, 1879 (out of print).
Do.
III. The Principal Triangulation, the Base-Line Figures, the Karñchi Longitudinal, N. W. Himãlaya, and the .Great Indus Series of the North-West Quadrilateral. By Colonel J. T, Walker, R.E., F.R.S., etc., etc., 'Superintendent of the Trigonometrical Survey, and his Assistants. Dehra Dūu, 1873 (out of print).
Do. IV. The Principal Triangulation, the Grent Arc-Section $24^{\circ}-30^{\circ}$, Rahūn, Gurhāgarh and Jogi-Tila Meridinnal Series and the Sutlej Series of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., etc., etc., Superintendent of the 'Trigonometrical Surucy, and his Assistants. Dehra Dūn, 1876."

Do.

Do.

Do.
VII. General Description of the Principal Triangulation of the North-East Quadrilateral, including the
Simultaneous Reduction and the Details of five of the component Scries, the North-East Longi-
VII. General Description of the Principal Triangulation of the North-East Quadrilateral, including the
Simultanneous Reduction and the Details of five of the component Scrics, the North-Eust Longitudinal, the Budhon Meridional, the Rungir Meridional, the amua Moridional, and the Karan
Meridional. Prepared under the directions of Lieutenant-General f. T. Walker, C.B., R. E., tudinal, the Budhon Meridional, the Rungir Meridional, the Amua Moridional, and the Karan
Meridional. Prepared under the directions of Lieutenant-General f. T. Walker, C.B., R. E., F.R.S., etc., etc., Surveyor-General of India and Superintendent of the Trigonometrical surney. F.R.S., etc., etc., Surveyor-General of India and Superintendent of the Trigonometrical surney.
Dehra Dūn, 1882.*

Do. VIII. Details of the Principal Triangulation of cleven of the component Series of the North.East Quadrilateral, including the following Series; the Gurwani Meridional, the Gora Meridional, the Hurilang Meridional, the Chendwār Meridional, North Parāsnāth Meridional, the North Malūncha Meridional, the Calcutta Meridional, the East Calcuta Longitudinal, the Brahmapüra Meridional, the Eastern Frontior-Scetion 23° to 26°, and the Assam Longitudinal. Preprred under the directions of Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., etc., etc., Surueyov General of India and Superintendent of the Trigonometrical Survey. Dehra Dūn, 1882.*
Do.

Do.

Do.

Do.

Da
Genoral Description of the Principal Triangulation of the Jodhpore and the Eastern Sind Meridionna Series of the North-West Quadrilateral, with the Details of their Reduction and the Final Results. Prepared in the O/fice of the Trigonometrical Branch, Survey of India, Colonel C. T. Haig, R.E., Offciating Deputy Surveyor-Genpral in charge, and published under the orders of Calonel G. C. DePrée, S.C., Surveyor-General of India. Dehra Dün, 1886.*
V. Details of the Pendulum Operations by Captains J. P. Basevi, R. E., and W. J. Heaviside, R.E., and of their Reduction. Prepared under the directions of Major-General. J. T. Walker, C.B., R.E., F.R.S., etc., etc., Surveyor. General of India and Superintendent of the Trigonometrical Survey. Dehra Dūn and Calcutta, 1879.*
VI. The Principal Triangulation of the South-East Quadrilateral, including the Great Arc-Section 18° to 24° the East Coast Series, the Cirlcutta and the Bider Longitudinal Series, the Jabalpur and the Biläspur Meridional Series, and the details of their Simultaneous Reduction. Prepared under the directions of Major-General J. T. Walker, C.B., R.E., F.R.S., etc., etc., SurveyorGeneral of India and Superintendent of the Trigonometrical Survey. Debra Dūn, 188) (oat of print). lectro-Telegraplic Longitude Operations executed during the years $1875-77$ and 1880-81, by Lieutenant-Colonel W. M. Campbell, I6. W., and Major W. J. Heaviside, R.E. Prepared under thr directions of Lieutenant-General J. T.'Wnlker, C.B., R.E., F.R.S., ctc., etc., Surveyor-General of India and Superintendent of the Trigonometrical Survey. Dehra Dūn, 1883.*
X. Electro-Telegraphic Longitude Operations exccuted during the years 1881-82, 1882-83, and 1883-84. by Major G. Strahan, R. E., and Major W. J. Heaviside, R. E. Prepared under the directions of Colonel C. T. Maig, R. E., Deputy Surneyor.General, Trigonometrical Branch, and published male' the orders of Colonel $\boldsymbol{H} . \operatorname{R}$. Thuillier, R. F., Survcyor-General of India. Dchra Dūn, 1887.*
XI. Astronomical Observations for Latitude made during tho period 1805 to 1885 , with a Grueral Description of the Operations and Final Results. Prepared under the directions of LinutrnantColonel G. Strahan, R. E., Deputy Surveyor General, Trigonometrical Branch, and published under the orders of Colonel \boldsymbol{H}. R. Ihuillier, R.E., Surveyor-General of India. Dohıa Dūn, 18:!n."
XIJ. General Description of the Principal Triangulation of the Southern. Trigon, including the Simultannous Reduction and the Details of two of the component Series, the Great Arc MeridiomalSection 8° to 18°, and the Bombay Lnngitudinal. Prepared under the dircctions of Liculanaut. Colonel G. Strahan, R. E., Deputy Surveyor-General, Trigonometrical Branch, and publishth under the orders of Colonel \boldsymbol{H}. R. Thuillier, R.E., Surveyor-Gencral of India. Dehra Dūn, 1890.*
XIII. Details of tie Principal Triangulation of five of the component Sories of the Southorn Trigon, in- clading the following series; the South Konkan Coast, the Mangalore Meridional, the Madras Meridional and Coant, the South-East Const, and the Mudras Longitudinal. Prepired Endre life directions of Lieutenant-Colonel G. Strahan, R. E., Depuiy Surveyor-General, Trigonometrical Rranch, and published under the orders of Colonel II. R. Lhwillier. R. E., Surneytr General of India. Dehra Dün, 1890.*

Yolume XIV. General Description of the Principal Triangulation of the South-West Quadrilateral, including the Simultaneous Reduction and the Details of its component Series. Prepared under the dircctions of W. H. Cole, Fsq., M. A., Officialing Deputy Surveyor-General, I'rigonometrical Branch, and published under the orders of Colonel H. R. Thuillicr, R. E., Surveyor General of India. Dehta Dũn, 1890.*
Do. . XV. Electro-Telegraphic Longitude Operations executed during the jears 1885-86, 1887-88, 1889-80 nnd 1891-92, and the Revised Results of Ales contained in Volumes IX and X; also the Simultaneous Reduotion and the Final Results of the whole of the Ofelations. Prepared under the directions of Colonel G. Strahan, F. E., Deputy Surveyor-Gentral, Trigonometrical Branch, and published under the orders of Colonel H. R. Thuillier, R.E., Surreyor-Gencral of India. Dehra Dūn, 1893.*

Do.

Do.

Do. XVIII. Astronomical Observations for Latitude made during the period 1885 to 1905 and the Deduced Values of the Jeflections of the Plumb-line. Prepared under the dircctions of Lieutenant-Colonel S. G. Burrard, R.E., F.R.S., Superinlendent, Trigonometrical Surceys, and published under the ordery of Colonel F. B. Ionge, R.E., Surveytor-Gentsul of India. Dehra Dūn, 1906.*

Do.
XIX. Levelling of Precision in India (1858 to 1909). By Colonel S. G. Burrard, R.E., F.R.S., Superintendent, Trigonometrical Surveys. Dehra Dūn, J910.*
Do. XIXA. Descriptions and Heights of Bench-malks on the Southen Lines of Levelling. Prepared under the directions of Colonel S. G. Burrard, R.E., F.R.S., Superintendent, Trigonometrical Surveys. Dehre Dūn, 1910. Price Rs. 6.*
Do.
XIXB. Desoriptions and Heights of Bench-marks on the Northein Lines of Levelling. Prepared under the directions of Colonel S. G. Burrard, R.E., F.R.S., Supcrintendent, Trigonometrical Surveys. Dehra Dūn, 1910. Prico Rs. ${ }^{\text {o.* }}$

SINOPSES OF THE RESULTS OF THE OPERATIONS OF TEE GREAT TRIGONOMETRICAL SURVEY OF INDIA, COMPRISING DESCRIPTIONS, CO-ORDINATES, ETC., OF THE PRINCIPAL AND SECONDARY STATIONS and OTHER FIXED POINTS OF THE SEVERAL SERIES OF TRIANGLES.

Price Rupees 2 per volume, except where otheruise stated.

Volume I. The Great Indus Series, or Series D of tho North-West Qundrilateral. By Colonel J. T. Walker, R.E., F.R.S., rtc., etc., Superintendent of the Trigonometrical Survey, and his Assistants. Dehra Dūn, 1874.*
Do.
II. The Great Are-Section 24° to 36°, or Series A of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., etc., ctc., Supcrintendent of the Survey, and his Assistants. Dehra Dūn, 1874.*
111. Tho Karnchi Longitudinal Scries, or Series B of the Nortli.West Quadrilateral. By Colonel J. T. Walker, R.E', F.R.S., etc.. etc., Superintendent of the Survey, and his Assistants. Dehra Dūn, 1874.*
D_{0}.
JV. The Gurhngarh Meridional Series, or Series F of the North- West Quadrilateral. By Colonel J. T. Walker, R. E., FiR.S., etc., etc., S̈uperintendent of the Survey, and his Assistants. Dehra Dūn, 1875.*
V. The Rahūn Meridinnal Series, or Series \boldsymbol{E} of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., ctc.. etc., Superintendent of the Survey, and his Assistants. Dehıa Dūn, 1875.*
VI. The Jori-Tila Meridional Scries or Series G, and the Sutlei Scries, or Series \boldsymbol{H} of tho North-West Quadrilateral. By Colonel J. T. Wulker, R.E., F.R.S., ctc., etc., Superintendent of the Survey, and his Assistants. Dohra Dūn, 1875.*
VII. The North. West Himālāja Scrics, or Series C of the Noith-West Quadrilateral, and the Triangulation of the Kashmir Survey. By Major-General J. T. Walker, C.B., R.E., F.R.S., etc., etc., Surveyor-General of India and Superintendent of the Survey and his Assistants. Delırn Dūn, 1879. (This volume is of great uso to mountainecrs.)*

Do. VIJA. The Jodhpore Meridional Series and the Enstern Sind Meridional Series of the North-West QuadriInteral. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel C. I. Haig, R.E., Deputy Surveyor General, in charge, and published under the orders of Colonel H. \boldsymbol{R}. Thuillier, R.E., Surveyor-Gencral of India. Dehra Iūn, 1887.*
VIII. The Great Are-Scetion 18° to 24°, or Scries A of the South-East Quadrilateral. By Colonel J. T. Walker, C.M., R.E., F.R.S., ctc., ctc., Superintendent of the Survey, and his Assistants. Dehra Dūn, 1878.*
Do.
IX. The Jnbonpur Meridional Sories, or Scries E of the South. East Quadrilateral. By Colonel J. 7. Walker, C.B., R.E., F.R.S., ctc., etc., Surveyor-(ieneral of Iudia and Superintendent of the Survey and his Assistants. Dehwa Dūn, 1878.*
X. The Bider Longitudinal Scries, or Sories D of the South-Fast Quadrilateral. By Major-General J. T. Walker, C. B., R. E., 'F. R. S., stc., vtc., Sureyor-General of India and Superintendent of the Survey, and his Assistants. Dehra Dūn, 18s0**
XI. The Bilāppur Meridional Series, or Sorics F of the Soulh-East Quadrilateral. By Major-General J. T. Walher, C. J.. R. E., F. R. S., etc., etc., Surncyor-General of India and Superintendent of. the Swricy, and his Assistamts. Dehra Dūn, 1880.*

1) ${ }^{0}$

Do.
XII. The Calcutta Longitudinal Series, or Series \boldsymbol{B} of tho South-Eant Quadviateral. By Major-General J. T. Walkrv, C. B., R. E., F. R. S., ctc., ctr.., Suroryor-Gcneral of India and Superintendent of the Survey, and his Assistants. Delira Dīn, 1880.*
XIII. The Enat Const Series, or Scries C of the South-East Quatrilateral. 13y Major-General J. T. Wabler, C. B., R. E., F. R. S., rte., ctro, Swיvcyor-Gencral of Indill and Superintendent of the Survey, and his Assistunts. Delıa Jūn, 1880."

Voludie XIIIA. The South Parāsnāth Maridional Series and the South Mmlancha Meridional Series of the South-East Quadrilatoral. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel C. T Haig, R. E., Otficiating Deputy Surveyor-General, in charge, and published under the orders
of Colonel G. C. DePree, S. C., Surve.yor-General of India. Debra Dun, 1885."

Do.
XIV. The Budhon Meridional Series, or Sorios J of the North-East Quadrilateral. By Lientenant-General J. T. Walker, C. B., R. E., F. R. S., etc., etc. Surveyor-Gencral of India and Superintendent of the
Survey, and his dssistants. Dehra Dūn, 1883.*

Do.
XV. The Rangir Meridional Serips, or Series K of the North-East Quadrilateral. By Lieutenant-General J.t. Walker, C. B., R. E., F. R. S., etc., etc., Surveyur-Gencral of India and Superintendent of Survey,
and his Assistants.
Do.
XVI. The Amun Meridional Series, or Sorios L, and the Karara Merjdional Series, or Series M of the North-East Quadrilateral. By Licutenant-General J. I. Walker, C. B., R. E., F. R. R., etc., tet., Surveyor-General of India, and Superintendent of the Survey, and lis Assistants.' Dehra Dün, 1883."
Do. XVII. The Gurwinni Meridional Series, or Series N, and the Gora Meridional Series, or Serien O of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C. B., R. E., F. R. S., etc., etc., Surveyor:Gencral of India and Superintendent of the Survey, und his Assistants. Debra Dūn, 1883.*
Do.
XVIII. The Hurilanong Meridional Series, or Suries P, and tho Chendwar Meridional Series, or Serion Q of tho North-East Luadrilateral. B3, Lieutenant-General J. T. Walker, C. B., R. E., F. R.S., etc., etc., Survcyor-Gencral uf India and Superintendent of the Survey, und his Assistants.' Dehra Dün, etc., etc.,
 S of the North-East Quadrilateral. Prepared by J. B. N. Henuessey, Esq., M. A., F. R. S., etc., cte.,
Offciating Deputy Surveyor-General, in charge of Drigonometrical Surveys, and his Assisto Oftiating Deputy Surveyor-General, in charge of Trigonometrical Surveys, and his Assistants, and
published. under. the orders of Colonel G. C. DcPret, S. C., Officiuting Surveyor-General of India. Dehra Dūn, 1883.*
Do. XX. The Calcutta Meridional Series, or Series T, and the Brahmapútra Meridional Scries, or Series V of the North-East Quadrilateral. Prepared by J. B. N. Hennessey, Esq., M. A., F. R. S., etce., etc., Officiating Deputy Surveyor-Gencral, in charge of Trigonometrical Surveys, and his Assistants, and pubtished under the orders of Culoncl G. C. DePr'fe, S. C., Offciating Surveyor.General of India. Dehra
Dän, 1883.
Do. XXI. The East Calculta Longitudinal Scries, or Series U, an l the Eastern Frontier Series-Section 33° to 26°, or Series W of the North-East Quadrilatcral. Prepared by J. B. N. Hennessey, Esq., M. A., F. R. S., etc., ctc., Officiating Deputy Surveyor-General, in charge of Trigonometrical Surveys, and his, Assistanls, and published under the orders of Colonel G. C. De Prér, S. C., Offciating Survegor-General of India, Dehra Dūn, 1883.*
Do. XXII. The Assam Valley Triangulation, E. of Meridian 92', omanatiug from the Assam Longitudimal Seriss, or Series X of the North-East Quadrilateral. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, R. E.. Deputy Surneyor-General, in charge, and published under the orders of Colonel H. R. Thuillier; R. E., Surceyor-Gcncral of India. Preliminary Issue. Dehra Dān, 1891, (out of print).
Do. XXIII. The South Konkan Coast Series, or Scries C of the Southern Trigon. Prepared in the office of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, R. E., Deputy Surveyor-General, in rharge, and published under the orders of Colonel H. R. Thuillier, R. E., Surveyor-Gencral of India. Dehra Dūn, 1891. *
Do. - XXIV. The Mangalore Meridional Series, or Series D of the Southorn Trigour Prepared in the Offire of the Tigonometrical Branrt, Survey of India, Colonel G. Strahan. R. E., Deputy Surveyor-General, in rharge, and published under the orders of Colonel II. R. Thuillier, R. E., Surveygr-General of India, "elıra Dãn, 1801.*
Do. XXV. The South-East Coast Series, or Series F of the Southern Trigon. Prepmed in the Offire of the Trigonnmetrical Braurh. Survey of Tudia, Colonel G. Strahan, R. E., Depuly Surneyor-General, in charge, and published under the moders of Colonel H. R. T"uillier, R. E., Surnyyr-Gencral of India. Dethra 1/ūn, 1891.*
Do. XXVI. The Bombay Longitudiwal Series, or Series B of the Sonthem Trifori. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonll \boldsymbol{G}. Strahan, R. E., Deputy Surveyor-General, in charge and pulished under the orders of Colonel II. R. Thuillicr, R. E., Surveyor-Gencral of India. Dehra lūñ, 1892.*
Do. XXVII. The Madras Longitudinal Spries, or Seriss G of the Southern Trivon. Prepared in the Offee of the Trigonometrical Branch, Survey of India, Colonel G. Strahan, R. E., Deputy Surucyor-Greneral, in charge, ant pullished under the orders of Colonel H. R. Thuillier, R. E., Surveyor-General of India. Dehir Dün, 1892.*
Do. XXVIII. The Madras Meridimaiand Coast Serics, or Series E of the Southern Trigon. Prepared ia the Office of the TYrigonometrical Branch, Survey of India, Coloncl G. Strahm, R. E., Deputy Surveynr-General. in charge, and published under the oiders of Coloncl II. R. Thuillier. R. E., Surveyor-General of Iudia. Dehra Dūn, 1492.*
Do. XXIX. The Great Are Meridimal Series-Section 8° to 18°, or Serios A of the Southern Trigon. Prepared in the Offece of the Trignometriral Branch, Survey of Indiu, Liculenant-Colonnl St. G. C. Gorn, R. F., superintendeut. Triygonometrical Surveys, in chargo. und published under the orters of Colonel G. Strahan. R. E., Surveygr-(iencral of India. Delia Dūn, 1899.*
 Qualtilateral. Prepired in the Office of the Trignumetrical Branch, Survey of Indiu, Colnonel G. Strahan, R. J., Depnty Survegor-Greneral, in chayge. and published nuder the orders of Colonel IF. R.

Do. XXXI. The Khañpisîra Meridional Series, or Series of of the South-West Quadribatcral. prepared in the offire of the Drigomometrictl B caurh, Survey of India, Coloncl (i. Ntrahan, IR. L., Depuly Surveyor-General, ia charge, and puilished under the order:s of Colonel IF. R. Thuillier;, R. E., Surveyor-General of India. Delıга Dīn, 1893.*
Do. XXXII. The Singi Meridimal Series or Series H of the South-Wrst Quardiliteral. Frepared in the offere of the Trignometriral Branch, Surwey of India, Colonel I. Strahan, R. E., Deputy Survyor-Girnerid, in rharye. and nublished under the orders of Colonel If. R. Thuillior, R. E., Surveyor ('tureral of India. Delira Dün. 1893.*

Yolume XXXIII. The Cutch Coast Series, or Series L of the South. West Qualrilateral. Prepared in the Office of the Trigononetrical Branch, Survey of India, Colonel G. Struhan. R. E., Deputy Surveyor-General, in charge, and published under the orders of Colonel H. R. Thuillier, C.I.E., R. E., Surveyor-General of India. Dehra Dūn, 1893.*
Addendum to the Cutch Coast Series. (Syn. Vol. XXXIII). Dehra Dūn, 1912.*
Do. XXXIV. The Käthiāゃār Meridional Scries, or Series J of the South-West Quadrilateral. Prepared in the Office of the Trigonometrical Branch, Survey of India. Colonel. G. Strahan, R. E., Depuly Surveyor-Generai, in charge, and pullisherd under the orders of Colonel H. R. Thuillier, C.I.E., R. E., Surveyor-('eneral of India. Dehra Dūn, 1894.*
Do. XXXV. The North-East Longitudinal Series, or Series I of the Noth-Enst Quadrilateral. Preparca under the Dircetions of Colonel S. G. Burrard, R.E., F. R. S., Superiatendent, Trigonometrical Surveys, and published under the orders of Colonel F. B. Longe, R. E., Surveyor-General of lndia. Dehra Dūn, 1909. Price Rs. $5 . *$

LEVELLING OF PRECISION IN INDIA AND BURMA. *

Each pamphlet correaponds to a sheet of the one-millionth map and contains the heights nnd descriptions of all Bench-Marks that lie within the area that the shect covers. Printed and putbiehed at Dehra Dūn.

Price Rupees 2 per pamphlet except where otherwise stated.

(1) Price Rupee 1.

PROFESSIONAL PAPERS OF THE sURYEY OF INDIA.

Price Rupec 1 per rolume, except where otherwise stated.
No. 1. On the Projection for a Map of India and adjacent Countries on the scale of $1: 1000000$. By Culonel st. G. C. Gore, R. E. Second Wdition, Dehra Dün, 1903.
,. 2. Method of measuring Geodetic Bases by means of Metallic Wires. By M. Jüderin. (l'ranslated from Mémoires Présentés parr Divers Savants à l'acadénie des Sciences de l'Institut de Francé). Dehra Dān, 1809.
, 3. Method of measuring Geodetic Basers by means of Coblby's Compensated Bars. Compiled by Lieutenaut H. McC. Cowie, R.E. Dehra Dün, 1900 .
" 4. Notes on the Calibration of Levels. Dy Lieutenant E. A. Tandy, R. E. Dehra Dūn, 19MO.* \dagger
 Major S. G. Burvord, R. F. Sceoud Edition. Dehra Dün, 1901. Price Rs, e.* \dagger
, \mathfrak{b}. Acconnt of a Determination of the Co-cflicients of Expansion of the Wites of the daderin Base-Line Appatatus. By

, 7. Miscellaneous. Caleutta, 1903. \dagger
(1) On the values of Longitude employed in maps of the Surver of India. (2) Lerolling across the Ganges at Damuldia. (3) Fxperiment to test the increase in the length of a Levelling Staft due to moisture and temperature. (4) Deseription of a Sun-dial designed for use with tide ganges. (5) Niekel-steel alloys and their application to Gcodesy. (Translated from the French.) (6) Theory of electric projectors. (Trimslated from the French).
„ 8. Experiments made to dotermine the Temperature Co-efficients of Watson's Magnetngraphs. By Ceptain iI. A. Denholm Fraser, R. E. Calcutta, 1905. \dagger
„ 9. An Account of the Scientific work of the Suver of Indin and a Comparison of its progerss with that of Forwign Surverss. Propard for the use of lic Survig Commiltec, 1905, by Lieutenant-Colonel S. G. Burrard, R. E., F. R. S. Calentta, 1905. \dagger
"10. The Pendulum Operations in India, 1903 to 1907. By Majuer G. T'. Lenox-Conunghum, R. E. Dehra Dûn, 1908. Price R.s. 2-N.*
"11. Ohsorvation of Atmospheric Refraction, 1005-09. By M. G. Shaw, Survey of Intia. Dehra Dūn, 1911.*
, 12. On the Origin of the IImanaya Mountains. By Coloncl s. G. Burrard, C. S. I., R. I., F. R. S. Calculta, 1913. \dagger

beradramental papers of the surver of inddat

(loor lepartmental use only).

No. 1. A consileration of the most suitable forms of type for use on maps. By Captain M. O'C. Tandy, R. E. Delna Dūn, 1913.
2. A review of the loundary Symbols ased on the map of varinus countrins. By Captain M. G'C. Tandy, R. E. Dehra Dūn, 193:3.

HAND-BUOKS OF THE SURVEY OF INDIA.

1. Hand-book of General Instruotions for tho Survey of India Department. Third Edition. Caloutto, 190\%. Price Ry. 3. \dagger
2. Hand-book of Professional Instructions for the Trigonometrioal Branch, Survey of Indie Department. Senond Edition, Calcutta, 1908. Price Rs. 3. \dagger
§3. Hand-book of Professional Instructions for the Topographical Branoh, Survey of India. Third Edition. Calcutta, 1905, Price Ro, $3 . \dagger$
3. Auxiliary Tubles to facilitute the calculations of the Survey of India. Fourth Edition, revisod and uxtended. Dehra Dūn 1906. Price Rs. 4 in cloth and celf, or Rs. 2 in paper and boards." \ddagger
4. Table for determining Heights in Traversing. Dehra $D \bar{u} n, 1898$. Price As. 8.*
5. Tables for Graticules of Mals. Extracts from the Auxiliary Tables of the Survey of India for the ase of Explorere. Delım Düd, 1910. Price As. 4.*
6. Logarithmic Sines and Cosines to 5 placos of decimals. Dehra Dūn, 1986. Price As. 4.*
7. Tables of distauces in Chains and Links corresponding to a subtense of 20 feet. Price As. 4. \dagger

MISCELLANEOUS PUBLICATIONS OF THE SURVEY OF INDIA.

(Chiefly for Departmental use only.)

1. Report of the Cartographic Applications of Photoyraphy as used in the Topographical Departments of the Principal States in Central Europe. By Colonel J. Waterhouse. Calcutta, 1870. \dagger
2. Report of the Operations connected with the Observation of the Total Solar Eelipse of 6th April 1875 at Camorta in the Nicobar Islands. By Colonel J. Waterhouse. Calcutta, 1875.
3. The application of Photography to the Reproduction of Maps and Plans by the Photo-Mechanical aud other Processes, By Colonel J. Wateriouse. Calcuta, 1878.
4. Metric Weights and Mensures and other Tables. Prepared for the use of the Photoyraphic and Lithographic Offices, Survey of India, by Colonel J. Wuterhouse, B.S.C., Assistant Surveyor-Geng, al of India, assisted by W. H. Cole, Esq,, M.A., and T. Archdale Pope, Esq., Survey of India. Calcutta, 1889. Price Rs. 1-8.
5. The Practical Notzs on Preparation of Drawings for Photographic Roproductions. By Colonel J. Waterhouse. Calcutla, 1890. Price Rs. 2. \dagger
6. Catalogue of 249 Stars for the epoch January 1, 1892, from observations by the Great Trigonometrical Survey of India. Debra Dūn, 1893. Price Rs. 2.*
7. Report on Local Attraction in India, 1893.94. By Captain S. G. Burrard, R.E. Calcutta, 1890.
8. Instructions for taking Maguetic Observations. By J. E'ccles, M.A. Dehria Dūn, 1896. Price Rs. 1-8*
9. Report on the Recent Determination of the Longitude of Madras. Calcutta, 1897. \dagger
10. Beport on the Trigonometrical Results of the Earthquake in Assam. Calcutta, 1898. \dagger
11. The Total Solar Eclipse, January 22, 1898. Dehra Dūn, 1898. Price Ks. थ." \dagger
(1) Report on the observations at Dumraon.
(2) Report on the observation at Pulgaon.
(3) Report on the observations at Saldol.
12. Star Charts for Latitude 20° N. By Colonel J. R. Hobday, I.S.C. Calcutta, 1900. Price Rs. 1.8. \dagger
13. Specimens of the Papers set at Examinations for the Provincial Service. Dehra Dūn, 1903. Gratis. \mathbf{q}°
14. Notes on the Thoor $\mathrm{r}_{\text {of }}$ of Errors of Observation. By J. Eccles, M.A. Dehra Dūn, 1903. Price As. 8.*
15. Report on the Identification and Nomenclature of the Himãlā̧an Peaks as seel frum Katmandu, Nepãl. Calcentla 1904. Price Rs. $2 . \dagger$
16. Notes on the use of the Jahlerin Base-line .lpparatus. Prepared under the direction of Lieutenant-Colonel F. B. Longe, R. E. Dehra Dūn, 1904.*†
17. The reproduction of Maps and Drawings-a havd-book for the uso of Government officials and others who prepare Maps, Plans and other subjects for reproduction in the Photographic and Lithographic Office of the Surveg of India. By T. A. Pope. C'alcutta, 1905.*
18. Rainfall from 1868 to 1903 , measured at the G. T. Survey Office. Dehra Dün.
19. Notes on the Topographical Survey of tho $\frac{1}{50000}$ - Sheets of Algeria by the Topographical Soction of the "Service Géographique do l'armé.'" By Captain IF. M. Colistream, R. E. Ualcutta, 1906. \dagger
20. Star Charts for Latitude 30° N. By Lieutenant-Colonel S. G. Burrard, R.E., F.R.S. Dohra Dûn, 1906. Price Rs. 1-8.* +
21. Instructions for the preparation of Maps of the one-inch Standarl Sheets, etc. Uutcr the direction of Colonel F. B. Longe. R.E. Simla, 1907.
 I.R.S. Superincudent. Trigonumetrical Surveys, und Mr. II. H. Hoylen, l.A., H.C.S., Superintendent, Geolegical Survey of India. Calcatta, 1917-ri8.*
```
    § The following chapters of a revisededition of this Hand-book are available for issuo in pamphlet form :-
    Chapter I.-Introductory.t
        , II.-Constitution and Organization of a Survey Parts \dagger
        .. III-Triangulation and ita Compmtation. }
        ", IV.-Traversing and its Comput:ation. }
        ", V.-Plane-tabling. }
        ,, VI--Yair Mapping. }
        " VII-Trans frontier 
        "VII.-Trans.frontier Reconnaissaure. }
        " 1x.-Fotest Surreys and Mapy.t
        " X.-Reproluction of the Sleets of tle me-iucle Map. }
```

Part \quad I.-The High Peaks of Asia:
" II.-The Principal Mountain Ranges of Asia.
" III.-The Rivers of the Himñlāya nud Tibet.
" IV.-The Geology of the Himālăya. Price Rs. 2 per part.
23. Notes on the Drawing of New Standerd Maps. By Major W. M. Coldstream, R.E. Calcutta, 1908. \dagger
24. Routes in the Western Himālãyas, Kashmir, otc. By Lieutenant-Colonel T. G. Montgomerie, R.E., F.R.S., F.R.G.S. Third Edition. Revised and Corrected. Dehra Dūn, 1909. Price Re. 1-8* \dagger
25. On a Simplification of the Computations relating to Rectangular Co-ordinates. By J. Eccles, M.A., Officiating Superintendent, Trigonometrical Surveys. Dehra Dūn, 1911."
26. Notes on the Use of Thermometers, Barometers and Hypsometers with Tables for the Computation of Heights. By J. de Graaff Hunter, M.A. Dehra Dūn, 1911.*
27. Report on Rubber Offset Printiug Cor Maps. By Major W. M. Coldstream, R.E. Calentta, 1911. \dagger
28. Notes on Printing Papers suitable for Maps and on Whatinan Drawing Paper. By Major W. M. Coldstream, R.E. Calcutta, 1911. \dagger
29. Report on the Working of the Light Field Litho Press (Experimental) in Novermber and December 1910 with Appendices. By Lieutenant A. A. Chase, R.E. Calcutta, 1911. \dagger
(1) Notes on Some of the Methods of Reprodaction suitable for the Field.
(2) Suggested Equipment Tables for tho Jight Field Litho Press (Exporimental).
30. Note on a Change of the Axes of the Terrestrial Spheroid in relation to the Triangulation of the G. T. Survey of India. By J. de Gruaff Hunter, M.A. Dehre Dūn, 1912.*
31. Miscellancous Papers relating to the Measurement of Geodetic Bases by Jäderin Inver Apparatus. Dehra Dün, 1912."
32. On the deformation resulting from the method of constructing the Intermational Atlas of the World on the scale of one to one million. Dy M. Ch. Lallemand. Translated by J. Eccles, M. A., together with tables for the projection of $\frac{1}{M}$. Maps on the Tnternational System. Dehra Dūn, 1912.*
33. A Note by Major C. L. Rolertson, C.M.G., R.E., on the representation of hills. Dehra Dūn, 1912.*
34. Report on a trial of the equipment of the lst (Prince of Wales' Own) Suppers and Miners for reproducing maps in the seld. By Licutcnant A. A. Cherse, R.E. Calcutta, 1912. \dagger
35. A cousideration of the Contour Intervals and colour scales best suited to Indian $\frac{1}{\mathrm{I} .}$ maps. By Captain M. O.'C. Tandy, R.E. Calcutta, 1913. \dagger
36. Notes on the "Vandyke" or Direct Zinc Printing Process, with details of Apparatus aurl Chemicals required for a small section. Compiled in the Photo. and Litho. Office, Survey of India, under the direction of Culonel 2. F. B. Renny-Tailyour, C. S. I., R. E., Offg. Surveyor General of India. Calcutta, 1913. \dagger

REPORTS ON EXPLORATIONS. \dagger

Price Rupees 1.8 per volume.

1. Keport on the Explorations in Great Tibetand Mongolia, made by A-K., in 1879-82. Duhtr Dūn, 1891.
2. Report on the Trans-Himñlāyan Explorations during 1867.
. 1868

$"$	$"$	$"$	$"$	$"$	1868.
$"$	$"$	$"$	1869.		

" " " " " 1870.
" " " $", \quad$ 1875-76 and 1878.
7. Report on the Explorations of :-
(a) Lama Serip Gyatsho, 1856-68,
(b) Explorer K-P., 1880.84,
(c) Lama U. G., 1883
(d) Explorer R. N., 1885-86,
(c) Explorer P. A., 1885-86,
in Sikkim, Bhutān and Tibet. Wehra Dūn, 1889.
8. Report on the Explorations in Nepāl and Tibet by Explorer M—H. (Season 1885-86.) Dehura Dūn, 1887.
9. Fixplorations on the I'sang-Po in 1880-84, by Explorer Kinthup. Dehra Dūn, 1911.
10. Report on the Survey Operations, Miri Mission, 1911-12. By Lieutenant C. G, Lcwis, R.E. Dehra Dūa, 1912.
11. Report on tho Survey Operations, Hkamti Long Experition, 1911.12. By Lieutcnant E.B. Curdew, R.E. Dehra Dūn, 1912.

CATALOGUE OF SCIENTIFIC BOOKS, ETC., ETC.

1. Catalogue of Books in the Mead-Quaters Librayy, Calculta, 1901.
2. Catatogue of Maps published by the Survoy of India. Calontta, 1910. Price Re. 1. \dagger
3. Price List of Mathematical Instrument Office. Calcutta, 1907. Gratis. \ddagger
4. Catalogue of Scientifie Books and Subjects in the Library of the Trigonometrical Survey Gifice. Dehra Dūn, 1909. Price Re. 1."
j. Cataloguo of Books in the Library of the Trigonometrical Survey Otice. Dehra Dūn, 1911. Priar Re 1.*

EXTRACTS FROM NARRATIVE REPORI'S OF THE SURVEY OF INDIA. \dagger

Price Rupees 1.8 per volume.

1. 1900-n1. Recent Improrements in Photo-Zincography. (. T. Triangulation, Opper Burma. Latitude Operations Txperimental Bhap Measurement with Jäderin Apparatus. Magnetic Survey. Tidnl and Levelling Report. Topography in Upper Burma. Cnlcutta, 1903.
2. 1901-02, G. T. Triangulation, Upper Burma. Latitude Operations. Magnetic Survey. Tidal and Levelling Report. Topography in Upper Burma. 'lopography in Sind. Topography in the Punjab. Cnleuttu, 190t.
3. 1902.03. Principal Triangulation, Upper Burma. Topography, Upprr Burma. Topography, Shan States, Survey of the Sambbar Lake. Latitude Operations. Tidal and Levelling Oparations. Magnetic Survey. Introduction of the Contract System of Payment in Traverso Survoys. Traversing with the Subteuse Bar. Compilation and Reproduotisp or Thina Maps. Calcutta, 1905.
4. 1903-04. The Magnetic Sarvey of Indin. Pendulum Operations. Tidal and Levelling Gporations. Astronomical Azimutha. Utilisation of old Traverse Data for Modern Surveys in the United Provinces of Agra and Oudh. Identification of Snow Peaks in Nepäl. Topographical Surveys in Sind. Notes on Town and Municipal Surveys. Notes on Riverain Surveys in the Puojab. Calcutta, 1906.
5. 1904-05. The Magnetic Survep of India. Pentulum Operations. Tidal and Levelling Operations. Triangulation in Belūchistan. Survey Operations with the Somaliland Field Force. Calcutta, 1907.
6. 1905-06. The Magnetic Survoy of India. Pendulum Operations. Tidal and Levelling Operations. Extract from the Nartilive Report of No. 11 Party. Caleutta, 1908.
7. 1906-07. The Magnetic Survey of India. Pendulum Operations. Tidal and Levelling Operations. Triangulation in Balūchistan. Astronomical Latitudes.: Topographienl Surveys in Karenui. Extract from the Narrative Report of No. Il Party. Calcutta, 1009.
8. 1:07-as. The Magnutic Survey of India, Tidal and Levelling Operations. Astronomical Latitudes. Pendulum Operations. Extact from the Narrative Report of No. 11 Party. Calcutta, 1910.
9. 190s-09. The Magnetic Survey of India. Tidal and Levelling Operations. Pendulum Operations. Triangulation in In lia. Calcutti, 1011.

RECORDS OF THE SURVEY OF INDIA. \dagger

Pricc Rupees 4 per volume.
Folume 1, 1909-10. Topographical Survey. Triangulation. Levelling. Geodetic Survey. Magnetic Survey. Tidal Operstions. Physingraphical Chunges. C'nleutta. 1912.

Volume IT. IOto-11. 'lopngraphical Surver. Triangulation. Tidal and Levelling. Geodetic Surves. Magnetic Survej, Reproducin: Wffices. C'alcutti, 1012.

Irolume I/I, 1911-12. Toporraphical Survey. Triangulation. Tidal and Levelling. Geodetic Survey. Magnetic Survey. Beproducing Oltices. culcuta, 1913.

SUPIET PUBLICATIONS OTHER THAN THOSE PUBLISHED BY THE SURVEY OF INDIA.

1. An Account of the Measurement of an Arc of the Meridian between the parallels of $18^{\circ} 3^{\prime}$ and $24^{\circ} 7^{\prime}$. By Captain George Enerest of the Bengal Artillery, F.R.S., etc. Published by the Authority of the Hon. East Iudia Company. London, 1830.
2. An Account of the Mensurement of two Sections of the Meridional Arc of Indin, bounded by the purallels of $18^{\circ} 3^{\prime} 10^{\prime \prime \prime} ;$ $24^{\circ} 7^{\prime} 11^{\prime}$; and $20^{\circ} 30^{\prime} 48^{\prime \prime}$. By Lieutenant-Colonel Everest, F.R.S., etc., late Surveyor-General of India, and his Assistants. Priuted ly order of the Court of Directors of the Hon. East India Company. London, 18:67.
3. A Memoir on the Indian Surveys. By Clements R. Markham. Printed by order of Her Majesty's Secretary of Stato for India i"l Council. Lomalon. 1871.
4. A Memoir on the Indian Surveys. By Clements R. Markham, C.B., F.R.S. Printed by order of Her Majesty's Secretary of Stute for India in Council. Siecond Edition. London, 1878.
5. A Memnir on the Indinn Uurveys, 187-1890. By Charles E. D. Black. Printed and published by order of Mer Majesty: Scretary of Stute for India in Council. London, 1891.
6. (f) A Manual of Survering for India, detailing the mole of operations on the Revenue Surveys in Bengal and the NorthWusten Pinvinces. Compiled h, Captains R. Smyth and H. K. Thuillier, Bengal Artillery. Prepared for the use of the Surey Department and pullished by the Authority of the Government of India. Calcutta, $185 \overline{1}$.
(b) A Manual of Surveying for Indiu, detailing the mode of operations on the Revenue Surveys in Bengal and the NorthWestrm Provinces. Compiled by Captains R. Smyth and II. L. Thuillier, Bengal Artillery. Prepared fon the use of the Surr.y Department. and puhished under the Authority of the Government of India. Second Edition. London, 1855.
(-1 i Manual of Survesing for India, detailing tbe mode of operations on the Trigonometrical, Topogaphical and Revonue

[^0]: （a）These figures do not apply to the whole area triangulated as the oompatations were not completed．
 （b）Figurean note compatad ln time for ionertion．
 （o）Forest boandury traversing．

[^1]: The hourly ohange is everywhere on increase, It is desirable that the changes at field atations should be similar to that at Dehrs Dûn, since gravily resulta are differential and any error due to lag of temperature will be approrimately the anane at nll stations and will tliprefore be cancelled. This increase of temperatare was, therefore, desired, and is, indeed, more unsily arrang ed than a decrease.

[^2]: * All Bouguer reeiduale are computed using Helmert's 1884 formula for γ_{0}. The 1901 formula has only been employed for the Hayford residuall.

[^3]: Reduction of the declination data.

[^4]: Rednced according to Houguer's method assuming mean density of the carth $5 \cdot 6$, mean surface denalty $2 \cdot 8$, \dagger According to Helmert's tormula of 1901, viz.:
 $\gamma_{0}=078 \cdot 04 \theta\left(1+0.005302 \sin ^{*} \phi-0.000007 \sin ^{2} 2 \phi\right)$,

